
21cmFAST

The 21cmFAST collaboration

May 25, 2023

CONTENTS

1 New Features in 3.0.0+ 3

2 Installation 5

3 Basic Usage 7
3.1 Interactive . 7
3.2 CLI . 7

4 Documentation 9

5 Acknowledging 11

6 Contents 13
6.1 Installation . 13
6.2 Design Philosophy and Features for v3+ . 17
6.3 Tutorials and FAQs . 19
6.4 API Reference . 76
6.5 Contributing . 176
6.6 Authors . 184
6.7 Changelog . 185

7 Indices and tables 193

Python Module Index 195

Index 197

i

ii

21cmFAST

A semi-numerical cosmological simulation code for the radio 21-cm signal.

joss-paper/yuxiangs-plot-small.png

This is the official repository for 21cmFAST: a semi-numerical code that is able to produce 3D cosmological realisations
of many physical fields in the early Universe. It is super-fast, combining the excursion set formalism with perturbation
theory to efficiently generate density, velocity, halo, ionization, spin temperature, 21-cm, and even ionizing flux fields
(see the above lightcones!). It has been tested extensively against numerical simulations, with excellent agreement at
the relevant scales.

21cmFAST has been widely used, for example, by the Murchison Widefield Array (MWA), LOw-Frequency ARray
(LOFAR) and Hydrogen Epoch of Reionization Array (HERA), to model the large-scale cosmological 21-cm signal.
In particular, the speed of 21cmFAST is important to produce simulations that are large enough (several Gpc across) to
represent modern low-frequency observations.

As of v3.0.0, 21cmFAST is conveniently wrapped in Python to enable more dynamic code.

CONTENTS 1

https://travis-ci.org/21cmFAST/21cmFAST
https://coveralls.io/github/21cmFAST/21cmFAST
https://21cmfast.readthedocs.io/en/latest/?badge=latest
https://github.com/conda-forge/21cmfast-feedstock
https://doi.org/10.21105/joss.02582
http://homepage.sns.it/mesinger/Media/lightcones_minihalo.png

21cmFAST

2 CONTENTS

CHAPTER

ONE

NEW FEATURES IN 3.0.0+

• Robust on-disk caching/writing both for efficiency and simplified reading of previously processed data (using
HDF5).

• Convenient data objects which simplify access to and processing of the various density and ionization fields.

• De-coupled functions mean that arbitrary functionality can be injected into the process.

• Improved exception handling and debugging

• Comprehensive documentation

• Comprehensive test suite.

• Strict semantic versioning.

3

https://semver.org

21cmFAST

4 Chapter 1. New Features in 3.0.0+

CHAPTER

TWO

INSTALLATION

We support Linux and MacOS (please let us know if you are successful in installing on Windows!). On these systems,
the simplest way to get 21cmFAST is by using conda:

conda install -c conda-forge 21cmFAST

21cmFAST is also available on PyPI, so that pip install 21cmFAST also works. However, it depends on some
external (non-python) libraries that may not be present, and so this method is discouraged unless absolutely necessary.
If using pip to install 21cmFAST (especially on MacOS), we thoroughly recommend reading the detailed installation
instructions.

5

https://www.anaconda.com/
https://21cmfast.readthedocs.io/en/latest/installation.html
https://21cmfast.readthedocs.io/en/latest/installation.html

21cmFAST

6 Chapter 2. Installation

CHAPTER

THREE

BASIC USAGE

21cmFAST can be run both interactively and from the command line (CLI).

3.1 Interactive

The most basic example of running a (very small) coeval simulation at a given redshift, and plotting an image of a slice
through it:

>>> import py21cmfast as p21c
>>> coeval = p21c.run_coeval(
>>> redshift=8.0,
>>> user_params={'HII_DIM': 50, "USE_INTERPOLATION_TABLES": False}
>>>)
>>> p21c.plotting.coeval_sliceplot(coeval, kind='brightness_temp')

The coeval object here has much more than just the brightness_temp field in it. You can plot the density field,
velocity field or a number of other fields. To simulate a full lightcone:

>>> lc = p21c.run_lightcone(
>>> redshift=8.0,
>>> max_redshift=15.0,
>>> init_box = coeval.init_struct,
>>>)
>>> p21c.plotting.lightcone_sliceplot(lc)

Here, we used the already-computed initial density field from coeval, which sets the size and parameters of the run,
but also means we don’t have to compute that (relatively expensive step again). Explore the full range of functionality
in the API Docs, or read more in-depth tutorials for further guidance.

3.2 CLI

The CLI can be used to generate boxes on-disk directly from a configuration file or command-line parameters. You can
run specific steps of the simulation independently, or an entire simulation at once. For example, to run just the initial
density field, you can do:

$ 21cmfast init --HII_DIM=100

The (quite small) simulation box produced is automatically saved into the cache (by default, at ~/21cmFAST-cache).
You can list all the files in your cache (and the parameters used in each of the simulations) with:

7

https://21cmfast.readthedocs.io/en/latest/reference/py21cmfast.html
https://21cmfast.readthedocs.io/en/latest/tutorials.html

21cmFAST

$ 21cmfast query

To run an entire coeval cube, use the following as an example:

$ 21cmfast coeval 8.0 --out=output/coeval.h5 --HII_DIM=100

In this case all the intermediate steps are cached in the standard cache directory, and the final Coeval box is saved to
output/coeval.h5. If no --out is specified, the coeval box itself is not written, but don’t worry – all of its parts are
cached, and so it can be rebuilt extremely quickly. Every input parameter to any of the input classes (there are a lot of
parameters) can be specified at the end of the call with prefixes of -- (like HII_DIM here). Alternatively, you can point
to a config YAML file, eg.:

$ 21cmfast lightcone 8.0 --max-z=15.0 --out=. --config=~/.21cmfast/runconfig_example.yml

There is an example configuration file here that you can build from. All input parameters are documented here.

8 Chapter 3. Basic Usage

https://21cmfast.readthedocs.io/en/latest/reference/_autosummary/py21cmfast.inputs.html
user_data/runconfig_example.yml
https://21cmfast.readthedocs.io/en/latest/reference/_autosummary/py21cmfast.inputs.html

CHAPTER

FOUR

DOCUMENTATION

Full documentation (with examples, installation instructions and full API reference) found at https://21cmfast.
readthedocs.org.

9

https://21cmfast.readthedocs.org
https://21cmfast.readthedocs.org

21cmFAST

10 Chapter 4. Documentation

CHAPTER

FIVE

ACKNOWLEDGING

If you use 21cmFAST v3+ in your research please cite both of:

Murray et al., (2020). 21cmFAST v3: A Python-integrated C code for generating 3D realizations of the
cosmic 21cm signal. Journal of Open Source Software, 5(54), 2582, https://doi.org/10.21105/joss.02582

Andrei Mesinger, Steven Furlanetto and Renyue Cen, “21CMFAST: a fast, seminumerical simulation of
the high-redshift 21-cm signal”, Monthly Notices of the Royal Astronomical Society, Volume 411, Issue 2,
pp. 955-972 (2011), https://ui.adsabs.harvard.edu/link_gateway/2011MNRAS.411..955M/doi:10.1111/j.
1365-2966.2010.17731.x

In addition, the following papers introduce various features into 21cmFAST. If you use these features, please cite the
relevant papers.

Mini-halos:

Muñoz, J.B., Qin, Y., Mesinger, A., Murray, S., Greig, B., and Mason, C., “The Impact of the First Galaxies
on Cosmic Dawn and Reionization” https://arxiv.org/abs/2110.13919 (for DM-baryon relative velocities)

Qin, Y., Mesinger, A., Park, J., Greig, B., and Muñoz, J. B., “A tale of two sites - I. Inferring the properties
of minihalo-hosted galaxies from current observations”, Monthly Notices of the Royal Astronomical So-
ciety, vol. 495, no. 1, pp. 123–140, 2020. https://doi.org/10.1093/mnras/staa1131. (for Lyman-Werner
and first implementation)

Mass-dependent ionizing efficiency:

Park, J., Mesinger, A., Greig, B., and Gillet, N., “Inferring the astrophysics of reionization and cosmic
dawn from galaxy luminosity functions and the 21-cm signal”, Monthly Notices of the Royal Astronomical
Society, vol. 484, no. 1, pp. 933–949, 2019. https://doi.org/10.1093/mnras/stz032.

11

https://doi.org/10.21105/joss.02582
https://ui.adsabs.harvard.edu/link_gateway/2011MNRAS.411..955M/doi:10.1111/j.1365-2966.2010.17731.x
https://ui.adsabs.harvard.edu/link_gateway/2011MNRAS.411..955M/doi:10.1111/j.1365-2966.2010.17731.x
https://arxiv.org/abs/2110.13919
https://doi.org/10.1093/mnras/staa1131
https://doi.org/10.1093/mnras/stz032

21cmFAST

12 Chapter 5. Acknowledging

CHAPTER

SIX

CONTENTS

6.1 Installation

The easiest way to install 21cmFAST is to use conda. Simply use conda install -c conda-forge 21cmFAST.
With this method, all dependencies are taken care of, and it should work on either Linux or MacOS. If for some reason
this is not possible for you, read on.

6.1.1 Dependencies

We try to have as many of the dependencies automatically installed as possible. However, since 21cmFAST relies on
some C libraries, this is not always possible.

The C libraries required are:

• gsl

• fftw (compiled with floating-point enabled, and --enable-shared)

• openmp

• A C-compiler with compatibility with the -fopenmp flag. Note: it seems that on OSX, if using gcc, you will
need v4.9.4+.

As it turns out, though these are fairly common libraries, getting them installed in a way that 21cmFAST understands
on various operating systems can be slightly non-trivial.

HPC

These libraries will often be available on a HPC environment by using the module load gsl and similar commands.
Note that just because they are loaded doesn’t mean that 21cmFAST will be able to find them. You may have to point to
the relevant lib/ and include/ folders for both gsl and fftw (these should be available using module show gsl
etc.)

Note also that while fftw may be available to load, it may not have the correct compilation options (i.e. float-enabled
and multiprocessing-enabled). In this case, see below.

13

21cmFAST

Linux

Most linux distros come with packages for the requirements, and also gcc by default, which supports -fopenmp. As
long as these packages install into the standard location, a standard installation of 21cmFAST will be automatically
possible (see below). If they are installed to a place not on the LD_LIBRARY/INCLUDE paths, then you must use the
compilation options (see below) to specify where they are. For example, you can check if the header file for fftw3 is
in its default location /usr/include/ by running:

cd /usr/include/
find fftw3.h

or:

locate fftw3.h

Note: there exists the option of installing gsl, fftw and gcc using conda. This is discussed below in the context of
MacOSX, where it is often the easiest way to get the dependencies, but it is equally applicable to linux.

Ubuntu

If you are installing 21cmFAST just as a user, the very simplest method is conda – with this method you simply need
conda install -c conda-forge 21cmFAST, and all dependencies will be automatically installed. However, if you
are going to use pip to install the package directly from the repository, there is a [bug in pip](https://stackoverflow.com/
questions/71340058/conda-does-not-look-for-libpthread-and-libpthread-nonshared-at-the-right-place-w) that means
it cannot find conda-installed shared libraries properly. In that case, it is much easier to install the basic dependencies
(gcc, gsl and fftw3) with your system’s package manager. gcc is by default available in Ubuntu. To check if gcc is
installed, run gcc --version in your terminal. Install fftw3 and gsl on your system with sudo apt-get install
libfftw3-dev libgsl-dev.

In your 21cmfast environment, now install the 21cmFAST package using:

cd /path/to/21cmFAST/
pip install .

If there is an issue during installation, add DEBUG=all or --DEBUG which may provide additional information.

Note: If there is an error during compilation that the fftw3 library cannot be found, check where the fftw3 library is
actually located using locate libfftw3.so. For example, it may be located in /usr/lib/x86_64-linux-gnu/.
Then, provide this path to the installation command with the LIB flag. For more details see the note in the MacOSX
section below.

Note: You may choose to install gsl as an anaconda package as well, however, in that case, you need to add both INC
paths in the installation command e.g.: GSL_INC=/path/to/conda/env/include FFTW_INC=/usr/include

14 Chapter 6. Contents

https://stackoverflow.com/questions/71340058/conda-does-not-look-for-libpthread-and-libpthread-nonshared-at-the-right-place-w
https://stackoverflow.com/questions/71340058/conda-does-not-look-for-libpthread-and-libpthread-nonshared-at-the-right-place-w

21cmFAST

MacOSX

On MacOSX, obtaining gsl and fftw is typically more difficult, and in addition, the newer native clang does not
offer -fopenmp support.

For conda users (which we recommend using), the easiest way to get gsl and fftw is by doing conda install -c
conda-forge gsl fftw in your environment.

Note: if you use conda to install gsl and fftw, then you will need to point at their location when installing 21cmFAST
(see compiler options below for details). In this case, the installation command should simply be prepended with:

LIB=/path/to/conda/env/lib INC=/path/to/conda/env/include

To get gcc, either use homebrew, or again, conda: conda install -c anaconda gcc. If you get the conda version,
you still need to install the headers:

xcode-select --install

On older versions then you need to do:

open /Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_<input␣
→˓version>.pkg

Note: some versions of MacOS will also require you to point to the correct gcc compiler using the CC environment
variable. Overall, the point is to NOT use clang. If gcc --version shows that it is actually GCC, then you can set
CC=gcc. If you use homebrew to install gcc, it is likely that you’ll have to set CC=gcc-11.

For newer versions, you may need to prepend the following command to your pip install command when installing
21cmFAST (see later instructions):

CFLAGS="-isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX<input version>.sdk"

See faqs/installation_faq for more detailed questions on installation. If you are on MacOSX and are having trouble
with installation (or would like to share a successful installation strategy!) please see the open issue.

With the dependencies installed, follow the instructions below, depending on whether you are a user or a developer.

6.1.2 For Users

Note: conda users may want to pre-install the following packages before running the below installation commands:

conda install numpy scipy click pyyaml cffi astropy h5py

Then, at the command line:

pip install git+https://github.com/21cmFAST/21cmFAST.git

If developing, from the top-level directory do:

6.1. Installation 15

faqs/installation_faq
https://github.com/21cmfast/21cmFAST/issues/84

21cmFAST

pip install -e .

Note the compile options discussed below!

6.1.3 For Developers

If you are developing 21cmFAST, we highly recommend using conda to manage your environment, and setting up an
isolated environment. If this is the case, setting up a full environment (with all testing and documentation dependencies)
should be as easy as (from top-level dir):

conda env create -f environment_dev.yml

Otherwise, if you are using pip:

pip install -e .[dev]

The [dev] “extra” here installs all development dependencies. You can instead use [tests] if you only want depen-
dencies for testing, or [docs] to be able to compile the documentation.

6.1.4 Compile Options

Various options exist to manage compilation via environment variables. Basically, any variable with “INC” in its name
will add to the includes directories, while any variable with “lib” in its name will add to the directories searched for
libraries. To change the C compiler, use CC. Finally, if you want to compile the C-library in dev mode (so you can do
stuff like valgrid and gdb with it), install with DEBUG=True. So for example:

CC=/usr/bin/gcc DEBUG=True GSL_LIB=/opt/local/lib FFTW_INC=/usr/local/include pip␣
→˓install -e .

Note: For MacOS a typical installation command will look like CC=gcc CFLAGS="-isysroot /Library/
Developer/CommandLineTools/SDKs/MacOSX<input version>.sdk" pip install . (using either gcc or
gcc-11 depending on how you installed gcc), with other compile options possible as well.

In addition, the BOXDIR variable specifies the default directory that any data produced by 21cmFAST will be cached.
This value can be updated at any time by changing it in the $CFGDIR/config.yml file, and can be overwritten on a
per-call basis.

While the -e option will keep your library up-to-date with any (Python) changes, this will not work when changing the
C extension. If the C code changes, you need to manually run rm -rf build/* then re-install as above.

Logging in C-Code

By default, the C-code will only print to stderr when it encounters warnings or critical errors. However, there exist
several levels of logging output that can be switched on, but only at compilation time. To enable these, use the following:

LOG_LEVEL=<log_level> pip install -e .

The <log_level> can be any non-negative integer, or one of the following (case-insensitive) identifiers:

NONE, ERROR, WARNING, INFO, DEBUG, SUPER_DEBUG, ULTRA_DEBUG

16 Chapter 6. Contents

21cmFAST

If an integer is passed, it corresponds to the above levels in order (starting from zero). Be careful if the level is set to 0
(or NONE), as useful error and warning messages will not be printed. By default, the log level is 2 (or WARNING),
unless the DEBUG=1 environment variable is set, in which case the default is 4 (or DEBUG). Using very high levels
(eg. ULTRA_DEBUG) can print out a lot of information and make the run time much longer, but may be useful in
some specific cases.

6.2 Design Philosophy and Features for v3+

Here we describe in broad terms the design philosophy of the new 21cmFAST, and some of its new features. This is
useful to get an initial bearing of how to go about using 21cmFAST, though most likely the tutorials will be better for
that. It is also useful for those who have used the “old” 21cmFAST (versions 2.1 and less) and want to know why they
should use this new version (and how to convert). In doing so, we’ll go over some of the key features of 21cmFAST
v3+. To get a more in-depth view of all the options and features available, look at the very thorough API Reference.

6.2.1 Design Philosophy

The goal of v3 of 21cmFAST is to provide the same computational efficiency and scientific features of the previous
generations, but packaged in a form that adopts the best modern programming standards, including:

• simple installation

• comprehensive documentation

• comprehensive test suite

• more modular code

• standardised code formatting

• truly open-source and collaborative design (via Github)

Partly to enable these standards, and partly due to the many extra benefits it brings, v3 also has the major distinction
of being wrapped entirely in Python. The extra benefits brought by this include:

• a native python library interface (eg. get your output box directly as a numpy array).

• better file-writing, into the HDF5 format, which saves metadata along with the box data.

• a caching system so that the same data never has to be calculated twice.

• reproducibility: know which exact version of 21cmFAST, with what parameters, produced a given dataset.

• significantly improved warnings and error checking/propagation.

• simplicity for adding new additional effects, and inserting them in the calculation pipeline.

We hope that additional features and benefits will be found by the growing community of 21cmFAST developers and
users.

6.2. Design Philosophy and Features for v3+ 17

21cmFAST

6.2.2 How it Works

v3 is not a complete rewrite of 21cmFAST. Most of the C-code of previous versions is kept, though it has been modu-
larised and modified in many places. The fundamental routines are the same (barring bugfixes!).

The major programs of the original version (init, perturb, ionize etc.) have been converted into modular functions
in C. Furthermore, most of the global parameters (and, more often than not, global #define options) have been mod-
ularised and converted into a series of input “parameter” structs. These get passed into the functions. Furthermore,
each C function, instead of writing a bunch of files, returns an output struct containing all the stuff it computed.

Each of these functions and structs are wrapped in Python using the cffi package. CFFI compiles the C code once
upon installation. Due to the fact that parameters are now passed around to the different functions, rather than being
global defines, we no longer need to re-compile every time an option is changed. Python itself can handle changing the
parameters, and can use the outputs in whatever way the user desires.

To maintain continuity with previous versions, a CLI interface is provided (see below) that acts in a similar fashion to
previous versions.

High-level configuration of 21cmFAST can be set using the py21cmfast.config object. It is essentially a dictionary
with its key/values the parameters. To make any changes in the object permanent, use the py21cmfast.config.
write() method. One global configuration option is direc, which specifies the directory in which 21cmFAST will
cache results by default (this can be overriden directly in any function, see below for details).

Finally, 21cmFAST contains a more robust cataloguing/caching method. Instead of saving data with a selection of the
dependent parameters written into the filename – a method which is prone to error if a parameter which is not part of
that selection is modified – 21cmFAST writes all data into a configurable central directory with a hash filename unique
to all parameters upon which the data depends. Each kind of dataset has attached methods which efficiently search this
central directory for matching data to be read when necessary. Several arguments are available for all library functions
which produce such datasets that control this output. In this way, the data that is being retrieved is always reliably
produced with the desired parameters, and users need not concern themselves with how and where the data is saved –
it can be retrieved merely by creating an empty object with the desired parameters and calling .read(), or even better,
by calling the function to produce the given dataset, which will by default just read it in if available.

6.2.3 CLI

The CLI interface always starts with the command 21cmfast, and has a number of subcommands. To list the available
subcommands, use:

$ 21cmfast --help

To get help on any subcommand, simply use:

$ 21cmfast <subcommand> --help

Any subcommand which runs some aspect of 21cmFAST will have a --config option, which specifies a configuration
file. This config file specifies the parameters of the run. Furthermore, any particular parameter that can be specified
in the config file can be alternatively specified on the command line by appending the command with the parameter
name, eg.:

$ 21cmfast init --config=my_config.yml --HII_DIM=40 hlittle=0.7 --DIM 100 SIGMA_8 0.9

The above command shows the numerous ways in which these parameters can be specified (with or without leading
dashes, and with or without “=”).

The CLI interface, while simple to use, does have the limitation that more complex arguments than can be passed to
the library functions are disallowed. For example, one cannot pass a previously calculated initial conditions box to the

18 Chapter 6. Contents

21cmFAST

perturb command. However, if such a box has been calculated with the default option to write it to disk, then it will
automatically be found and used in such a situation, i.e. the following will not re-calculate the init box:

$ 21cmfast init
$ 21cmfast perturb redshift=8.0

This means that almost all of the functionality provided in the library is accessible via the CLI.

6.3 Tutorials and FAQs

The following introductory tutorials will help you get started with 21cmFAST:

6.3.1 Running and Plotting Coeval Cubes

The aim of this tutorial is to introduce you to how 21cmFAST does the most basic operations: producing single coeval
cubes, and visually verifying them. It is a great place to get started with 21cmFAST.

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import os
We change the default level of the logger so that
we can see what's happening with caching.
import logging, sys, os
logger = logging.getLogger('21cmFAST')
logger.setLevel(logging.INFO)

import py21cmfast as p21c

For plotting the cubes, we use the plotting submodule:
from py21cmfast import plotting

For interacting with the cache
from py21cmfast import cache_tools

[2]: print(f"Using 21cmFAST version {p21c.__version__}")

Using 21cmFAST version 3.0.2

Clear the cache so that we get the same results for the notebook every time (don’t worry about this for now). Also, set
the default output directory to _cache/:

[3]: if not os.path.exists('_cache'):
os.mkdir('_cache')

p21c.config['direc'] = '_cache'
cache_tools.clear_cache(direc="_cache")

2020-10-02 09:51:10,651 | INFO | Removed 0 files from cache.

6.3. Tutorials and FAQs 19

21cmFAST

Basic Usage

The simplest (and typically most efficient) way to produce a coeval cube is simply to use the run_coeval method.
This consistently performs all steps of the calculation, re-using any data that it can without re-computation or increased
memory overhead.

[4]: coeval8, coeval9, coeval10 = p21c.run_coeval(
redshift = [8.0, 9.0, 10.0],
user_params = {"HII_DIM": 100, "BOX_LEN": 100, "USE_INTERPOLATION_TABLES": True},
cosmo_params = p21c.CosmoParams(SIGMA_8=0.8),
astro_params = p21c.AstroParams({"HII_EFF_FACTOR":20.0}),
random_seed=12345

)

There are a number of possible inputs for run_coeval, which you can check out either in the API reference or by
calling help(p21c.run_coeval). Notably, the redshift must be given: it can be a single number, or a list of
numbers, defining the redshift at which the output coeval cubes will be defined.

Other params we’ve given here are user_params, cosmo_params and astro_params. These are all used for defining
input parameters into the backend C code (there’s also another possible input of this kind; flag_options). These can
be given either as a dictionary (as user_params has been), or directly as a relevant object (like cosmo_params and
astro_params). If creating the object directly, the parameters can be passed individually or via a single dictionary. So
there’s a lot of flexibility there! Nevertheless we encourage you to use the basic dictionary. The other ways of passing
the information are there so we can use pre-defined objects later on. For more information about these “input structs”,
see the API docs.

We’ve also given a direc option: this is the directory in which to search for cached data (and also where cached data
should be written). Throughout this notebook we’re going to set this directly to the _cache folder, which allows us
to manage it directly. By default, the cache location is set in the global configuration in ~/.21cmfast/config.yml.
You’ll learn more about caching further on in this tutorial.

Finally, we’ve given a random seed. This sets all the random phases for the simulation, and ensures that we can exactly
reproduce the same results on every run.

The output of run_coeval is a list of Coeval instances, one for each input redshift (it’s just a single object if a single
redshift was passed, not a list). They store everything related to that simulation, so that it can be completely compared
to other simulations.

For example, the input parameters:

[5]: print("Random Seed: ", coeval8.random_seed)
print("Redshift: ", coeval8.redshift)
print(coeval8.user_params)

Random Seed: 12345
Redshift: 8.0
UserParams(BOX_LEN:100, DIM:300, HII_DIM:100, HMF:1, POWER_SPECTRUM:0, USE_FFTW_WISDOM:
→˓False, USE_RELATIVE_VELOCITIES:False)

This is where the utility of being able to pass a class instance for the parameters arises: we could run another itera-
tion of coeval cubes, with the same user parameters, simply by doing p21c.run_coeval(user_params=coeval8.
user_params, ...).

Also in the Coeval instance are the various outputs from the different steps of the computation. You’ll see more about
what these steps are further on in the tutorial. But for now, we show that various boxes are available:

[6]: print(coeval8.hires_density.shape)
print(coeval8.brightness_temp.shape)

20 Chapter 6. Contents

../reference/py21cmfast.html
../reference/_autosummary/py21cmfast.inputs.html

21cmFAST

(300, 300, 300)
(100, 100, 100)

Along with these, full instances of the output from each step are available as attributes that end with “struct”. These
instances themselves contain the numpy arrays of the data cubes, and some other attributes that make them easier to
work with:

[7]: coeval8.brightness_temp_struct.global_Tb

[7]: 17.622644

By default, each of the components of the cube are cached to disk (in our _cache/ folder) as we run it. However, the
Coeval cube itself is not written to disk by default. Writing it to disk incurs some redundancy, since that data probably
already exists in the cache directory in seperate files.

Let’s save to disk. The save method by default writes in the current directory (not the cache!):

[8]: filename = coeval8.save(direc='_cache')

The filename of the saved file is returned:

[9]: print(os.path.basename(filename))

Coeval_z8.0_a3c7dea665420ae9c872ba2fab1b3d7d_r12345.h5

Such files can be read in:

[10]: new_coeval8 = p21c.Coeval.read(filename, direc='.')

Some convenient plotting functions exist in the plotting module. These can work directly on Coeval objects, or any
of the output structs (as we’ll see further on in the tutorial). By default the coeval_sliceplot function will plot the
brightness_temp, using the standard traditional colormap:

[11]: fig, ax = plt.subplots(1,3, figsize=(14,4))
for i, (coeval, redshift) in enumerate(zip([coeval8, coeval9, coeval10], [8,9,10])):

plotting.coeval_sliceplot(coeval, ax=ax[i], fig=fig);
plt.title("z = %s"%redshift)

plt.tight_layout()

Any 3D field can be plotted, by setting the kind argument. For example, we could alternatively have plotted the dark
matter density cubes perturbed to each redshift:

[12]: fig, ax = plt.subplots(1,3, figsize=(14,4))
for i, (coeval, redshift) in enumerate(zip([coeval8, coeval9, coeval10], [8,9,10])):

(continues on next page)

6.3. Tutorials and FAQs 21

21cmFAST

(continued from previous page)

plotting.coeval_sliceplot(coeval, kind='density', ax=ax[i], fig=fig);
plt.title("z = %s"%redshift)

plt.tight_layout()

To see more options for the plotting routines, see the API Documentation.

Coeval instances are not cached themselves – they are containers for data that is itself cached (i.e. each of the _struct
attributes of Coeval). See the api docs for more detailed information on these.

You can see the filename of each of these structs (or the filename it would have if it were cached – you can opt to not
write out any given dataset):

[13]: coeval8.init_struct.filename

[13]: 'InitialConditions_6f0eb48c62c36acef23416d5d0fbcf3b_r12345.h5'

You can also write the struct anywhere you’d like on the filesystem. This will not be able to be automatically used as a
cache, but it could be useful for sharing files with colleagues.

[14]: coeval8.init_struct.save(fname='my_init_struct.h5')

This brief example covers most of the basic usage of 21cmFAST (at least with Coeval objects – there are also
Lightcone objects for which there is a separate tutorial).

For the rest of the tutorial, we’ll cover a more advanced usage, in which each step of the calculation is done indepen-
dently.

Advanced Step-by-Step Usage

Most users most of the time will want to use the high-level run_coeval function from the previous section. However,
there are several independent steps when computing the brightness temperature field, and these can be performed one-
by-one, adding any other effects between them if desired. This means that the new 21cmFAST is much more flexible.
In this section, we’ll go through in more detail how to use the lower-level methods.

Each step in the chain will receive a number of input-parameter classes which define how the calculation should run.
These are the user_params, cosmo_params, astro_params and flag_options that we saw in the previous section.

Conversely, each step is performed by running a function which will return a single object. Every major function returns
an object of the same fundamental class (an OutputStruct) which has various methods for reading/writing the data,
and ensuring that it’s in the right state to receive/pass to and from C. These are the objects stored as init_box_struct
etc. in the Coeval class.

As we move through each step, we’ll outline some extra details, hints and tips about using these inputs and outputs.

22 Chapter 6. Contents

../reference/_autosummary/py21cmfast.plotting.html
../reference/_autosummary/py21cmfast.outputs.html

21cmFAST

Initial Conditions

The first step is to get the initial conditions, which defines the cosmological density field before any redshift evolution
is applied.

[15]: initial_conditions = p21c.initial_conditions(
user_params = {"HII_DIM": 100, "BOX_LEN": 100},
cosmo_params = p21c.CosmoParams(SIGMA_8=0.8),
random_seed=54321

)

We’ve already come across all these parameters as inputs to the run_coeval function. Indeed, most of the steps have
very similar interfaces, and are able to take a random seed and parameters for where to look for the cache. We use a
different seed than in the previous section so that all our boxes are “fresh” (we’ll show how the caching works in a later
section).

These initial conditions have 100 cells per side, and a box length of 100 Mpc. Note again that they can either be passed
as a dictionary containing the input parameters, or an actual instance of the class. While the former is the suggested
way, one benefit of the latter is that it can be queried for the relevant parameters (by using help or a post-fixed ?), or
even queried for defaults:

[16]: p21c.CosmoParams._defaults_

[16]: {'SIGMA_8': 0.8102,
'hlittle': 0.6766,
'OMm': 0.30964144154550644,
'OMb': 0.04897468161869667,
'POWER_INDEX': 0.9665}

(these defaults correspond to the Planck15 cosmology contained in Astropy).

So what is in the initial_conditions object? It is what we call an OutputStruct, and we have seen it before, as
the init_box_struct attribute of Coeval. It contains a number of arrays specifying the density and velocity fields of
our initial conditions, as well as the defining parameters. For example, we can easily show the cosmology parameters
that are used (note the non-default 𝜎8 that we passed):

[17]: initial_conditions.cosmo_params

[17]: CosmoParams(OMb:0.04897468161869667, OMm:0.30964144154550644, POWER_INDEX:0.9665, SIGMA_
→˓8:0.8, hlittle:0.6766)

A handy tip is that the CosmoParams class also has a reference to a corresponding Astropy cosmology, which can be
used more broadly:

[18]: initial_conditions.cosmo_params.cosmo

[18]: FlatLambdaCDM(name="Planck15", H0=67.7 km / (Mpc s), Om0=0.31, Tcmb0=2.725 K, Neff=3.05,␣
→˓m_nu=[0. 0. 0.06] eV, Ob0=0.049)

Merely printing the initial conditions object gives a useful representation of its dependent parameters:

[19]: print(initial_conditions)

InitialConditions(UserParams(BOX_LEN:100, DIM:300, HII_DIM:100, HMF:1, POWER_SPECTRUM:0,␣
→˓USE_FFTW_WISDOM:False, USE_RELATIVE_VELOCITIES:False);

CosmoParams(OMb:0.04897468161869667, OMm:0.30964144154550644, POWER_INDEX:0.9665,
→˓ SIGMA_8:0.8, hlittle:0.6766);

(continues on next page)

6.3. Tutorials and FAQs 23

21cmFAST

(continued from previous page)

random_seed:54321)

(side-note: the string representation of the object is used to uniquely define it in order to save it to the cache. . . which
we’ll explore soon!).

To see which arrays are defined in the object, access the fieldnames (this is true for all OutputStruct objects):

[20]: initial_conditions.fieldnames

[20]: ['lowres_density',
'lowres_vx',
'lowres_vy',
'lowres_vz',
'lowres_vx_2LPT',
'lowres_vy_2LPT',
'lowres_vz_2LPT',
'hires_density',
'lowres_vcb',
'hires_vcb']

The coeval_sliceplot function also works on OutputStruct objects (as well as the Coeval object as we’ve already
seen). It takes the object, and a specific field name. By default, the field it plots is the first field in fieldnames (for
any OutputStruct).

[21]: plotting.coeval_sliceplot(initial_conditions, "hires_density");

Perturbed Field

After obtaining the initial conditions, we need to perturb the field to a given redshift (i.e. the redshift we care about).
This step clearly requires the results of the previous step, which we can easily just pass in. Let’s do that:

[22]: perturbed_field = p21c.perturb_field(
redshift = 8.0,
init_boxes = initial_conditions

)

24 Chapter 6. Contents

21cmFAST

Note that we didn’t need to pass in any input parameters, because they are all contained in the initial_conditions
object itself. The random seed is also taken from this object.

Again, the output is an OutputStruct, so we can view its fields:

[23]: perturbed_field.fieldnames

[23]: ['density', 'velocity']

This time, it has only density and velocity (the velocity direction is chosen without loss of generality). Let’s view the
perturbed density field:

[24]: plotting.coeval_sliceplot(perturbed_field, "density");

It is clear here that the density used is the low-res density, but the overall structure of the field looks very similar.

Ionization Field

Next, we need to ionize the box. This is where things get a little more tricky. In the simplest case (which, let’s be
clear, is what we’re going to do here) the ionization occurs at the saturated limit, which means we can safely ignore
the contribution of the spin temperature. This means we can directly calculate the ionization on the density/velocity
fields that we already have. A few more parameters are needed here, and so two more “input parameter dictionaries”
are available, astro_params and flag_options. Again, a reminder that their parameters can be viewed by using eg.
help(p21c.AstroParams), or by looking at the API docs.

For now, let’s leave everything as default. In that case, we can just do:

[25]: ionized_field = p21c.ionize_box(
perturbed_field = perturbed_field

)

2020-02-29 15:10:43,902 | INFO | Existing init_boxes found and read in (seed=54321).

That was easy! All the information required by ionize_box was given directly by the perturbed_field object. If
we had also passed a redshift explicitly, this redshift would be checked against that from the perturbed_field and
an error raised if they were incompatible:

Let’s see the fieldnames:

6.3. Tutorials and FAQs 25

../reference/_autosummary/py21cmfast.inputs.html

21cmFAST

[26]: ionized_field.fieldnames

[26]: ['first_box', 'xH_box', 'Gamma12_box', 'z_re_box', 'dNrec_box']

Here the first_box field is actually just a flag to tell the C code whether this has been evolved or not. Here, it hasn’t
been, it’s the “first box” of an evolutionary chain. Let’s plot the neutral fraction:

[27]: plotting.coeval_sliceplot(ionized_field, "xH_box");

Brightness Temperature

Now we can use what we have to get the brightness temperature:

[28]: brightness_temp = p21c.brightness_temperature(ionized_box=ionized_field, perturbed_
→˓field=perturbed_field)

This has only a single field, brightness_temp:

[29]: plotting.coeval_sliceplot(brightness_temp);

26 Chapter 6. Contents

21cmFAST

The Problem

And there you have it – you’ve computed each of the four steps (there’s actually another, spin_temperature, that you
require if you don’t assume the saturated limit) individually.

However, some problems quickly arise. What if you want the perturb_field, but don’t care about the initial con-
ditions? We know how to get the full Coeval object in one go, but it would seem that the sub-boxes have to each be
computed as the input to the next.

A perhaps more interesting problem is that some quantities require evolution: i.e. a whole bunch of simulations at a
string of redshifts must be performed in order to obtain the current redshift. This is true when not in the saturated limit,
for example. That means you’d have to manually compute each redshift in turn, and pass it to the computation at the
next redshift. While this is definitely possible, it becomes difficult to set up manually when all you care about is the
box at the final redshift.

py21cmfast solves this by making each of the functions recursive: if perturb_field is not passed the init_boxes
that it needs, it will go and compute them, based on the parameters that you’ve passed it. If the previous spin_temp
box required for the current redshift is not passed – it will be computed (and if it doesn’t have a previous spin_temp
it will be computed, and so on).

That’s all good, but what if you now want to compute another perturb_field, with the same fundamental parameters
(but at a different redshift)? Since you didn’t ever see the init_boxes, they’ll have to be computed all over again.
That’s where the automatic caching comes in, which is where we turn now. . .

Using the Automatic Cache

To solve all this, 21cmFAST uses an on-disk caching mechanism, where all boxes are saved in HDF5 format in a default
location. The cache allows for reading in previously-calculated boxes automatically if they match the parameters that
are input. The functions used at every step (in the previous section) will try to use a cached box instead of calculating
a new one, unless its explicitly asked not to.

Thus, we could do this:

[30]: perturbed_field = p21c.perturb_field(
redshift = 8.0,

(continues on next page)

6.3. Tutorials and FAQs 27

21cmFAST

(continued from previous page)

user_params = {"HII_DIM": 100, "BOX_LEN": 100},
cosmo_params = p21c.CosmoParams(SIGMA_8=0.8),

)
plotting.coeval_sliceplot(perturbed_field, "density");

2020-02-29 15:10:45,367 | INFO | Existing z=8.0 perturb_field boxes found and read in␣
→˓(seed=12345).

Note that here we pass exactly the same parameters as were used in the previous section. It gives a message that the
full box was found in the cache and immediately returns. However, if we change the redshift:

[31]: perturbed_field = p21c.perturb_field(
redshift = 7.0,
user_params = {"HII_DIM": 100, "BOX_LEN": 100},
cosmo_params = p21c.CosmoParams(SIGMA_8=0.8),

)
plotting.coeval_sliceplot(perturbed_field, "density");

2020-02-29 15:10:45,748 | INFO | Existing init_boxes found and read in (seed=12345).

28 Chapter 6. Contents

21cmFAST

Now it finds the initial conditions, but it must compute the perturbed field at the new redshift. If we had changed the
initial parameters as well, it would have to calculate everything:

[32]: perturbed_field = p21c.perturb_field(
redshift = 8.0,
user_params = {"HII_DIM": 50, "BOX_LEN": 100},
cosmo_params = p21c.CosmoParams(SIGMA_8=0.8),

)

plotting.coeval_sliceplot(perturbed_field, "density");

This shows that we don’t need to perform the previous step to do any of the steps, they will be calculated automatically.

Now, let’s get an ionized box, but this time we won’t assume the saturated limit, so we need to use the spin temperature.
We can do this directly in the ionize_box function, but let’s do it explicitly. We will use the auto-generation of the
initial conditions and perturbed field. However, the spin temperature is an evolved field, i.e. to compute the field at 𝑧,
we need to know the field at 𝑧 + ∆𝑧. This continues up to some redshift, labelled z_heat_max, above which the spin
temperature can be defined directly from the perturbed field.

Thus, one option is to pass to the function a previous spin temperature box, to evolve to this redshift. However, we
don’t have a previous spin temperature box yet. Of course, the function itself will go and calculate that box if it’s not
given (or read it from cache if it’s been calculated before!). When it tries to do that, it will go to the one before, and so
on until it reaches z_heat_max, at which point it will calculate it directly.

To facilitate this recursive progression up the redshift ladder, there is a parameter, z_step_factor, which is a multi-
plicate factor that determines the previous redshift at each step.

We can also pass the dependent boxes explicitly, which provides the parameters necessary.

WARNING: THIS IS THE MOST TIME-CONSUMING STEP OF THE CALCULATION!

[34]: spin_temp = p21c.spin_temperature(
perturbed_field = perturbed_field,
zprime_step_factor=1.05,

)

2020-02-29 15:11:38,347 | INFO | Existing init_boxes found and read in␣
→˓(seed=521414794440).

6.3. Tutorials and FAQs 29

21cmFAST

[35]: plotting.coeval_sliceplot(spin_temp, "Ts_box");

Let’s note here that each of the functions accepts a few of the same arguments that modifies how the boxes are cached.
There is a write argument, which if set to False, will disable writing that box to cache (and it is passed through
the recursive heirarchy). There is also regenerate, which if True, forces this box and all its predecessors to be
re-calculated even if they exist in the cache. Then there is direc, which we have seen before.

Finally note that by default, random_seed is set to None. If this is the case, then any cached dataset matching all other
parameters will be read in, and the random_seed will be set based on the file read in. If it is set to an integer number,
then the cached dataset must also match the seed. If it is None, and no matching dataset is found, a random seed will
be autogenerated.

Now if we calculate the ionized box, ensuring that it uses the spin temperature, then it will also need to be evolved.
However, due to the fact that we cached each of the spin temperature steps, these should be read in accordingly:

[36]: ionized_box = p21c.ionize_box(
spin_temp = spin_temp,
zprime_step_factor=1.05,

)

2020-02-29 15:12:55,794 | INFO | Existing init_boxes found and read in␣
→˓(seed=521414794440).
2020-02-29 15:12:55,814 | INFO | Existing z=34.2811622461279 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:55,827 | INFO | Existing z=34.2811622461279 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:55,865 | INFO | Existing z=32.60110690107419 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:55,880 | INFO | Existing z=32.60110690107419 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:55,906 | INFO | Existing z=31.00105419149923 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:55,919 | INFO | Existing z=31.00105419149923 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:55,948 | INFO | Existing z=29.4771944680945 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:55,963 | INFO | Existing z=29.4771944680945 spin_temp boxes found and␣
→˓read in (seed=521414794440). (continues on next page)

30 Chapter 6. Contents

21cmFAST

(continued from previous page)

2020-02-29 15:12:55,991 | INFO | Existing z=28.02589949342333 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,005 | INFO | Existing z=28.02589949342333 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,033 | INFO | Existing z=26.643713803260315 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,051 | INFO | Existing z=26.643713803260315 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,079 | INFO | Existing z=25.32734647929554 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,094 | INFO | Existing z=25.32734647929554 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,127 | INFO | Existing z=24.073663313614798 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,141 | INFO | Existing z=24.073663313614798 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,168 | INFO | Existing z=22.879679346299806 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,182 | INFO | Existing z=22.879679346299806 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,205 | INFO | Existing z=21.742551758380767 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,219 | INFO | Existing z=21.742551758380767 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,403 | INFO | Existing z=20.659573103219778 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,418 | INFO | Existing z=20.659573103219778 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,620 | INFO | Existing z=19.62816486020931 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,635 | INFO | Existing z=19.62816486020931 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,784 | INFO | Existing z=18.645871295437438 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,793 | INFO | Existing z=18.645871295437438 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:56,931 | INFO | Existing z=17.71035361470232 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:56,941 | INFO | Existing z=17.71035361470232 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:57,085 | INFO | Existing z=16.81938439495459 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:57,095 | INFO | Existing z=16.81938439495459 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:57,243 | INFO | Existing z=15.970842280909132 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:57,254 | INFO | Existing z=15.970842280909132 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:57,399 | INFO | Existing z=15.162706934199171 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:57,408 | INFO | Existing z=15.162706934199171 spin_temp boxes found and␣
→˓read in (seed=521414794440).

(continues on next page)

6.3. Tutorials and FAQs 31

21cmFAST

(continued from previous page)

2020-02-29 15:12:57,544 | INFO | Existing z=14.393054223046828 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:57,554 | INFO | Existing z=14.393054223046828 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:57,691 | INFO | Existing z=13.66005164099698 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:57,700 | INFO | Existing z=13.66005164099698 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:57,832 | INFO | Existing z=12.961953943806646 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:57,840 | INFO | Existing z=12.961953943806646 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:57,970 | INFO | Existing z=12.297098994101567 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:57,978 | INFO | Existing z=12.297098994101567 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:58,106 | INFO | Existing z=11.663903803906255 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:58,114 | INFO | Existing z=11.663903803906255 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:58,244 | INFO | Existing z=11.060860765625003 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:58,254 | INFO | Existing z=11.060860765625003 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:58,394 | INFO | Existing z=10.486534062500002 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:58,402 | INFO | Existing z=10.486534062500002 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:58,529 | INFO | Existing z=9.939556250000003 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:58,538 | INFO | Existing z=9.939556250000003 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:58,674 | INFO | Existing z=9.418625000000002 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:58,682 | INFO | Existing z=9.418625000000002 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:58,810 | INFO | Existing z=8.922500000000001 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:58,819 | INFO | Existing z=8.922500000000001 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:58,947 | INFO | Existing z=8.450000000000001 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:12:58,956 | INFO | Existing z=8.450000000000001 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:12:59,086 | INFO | Existing z=8.0 perturb_field boxes found and read in␣
→˓(seed=521414794440).

[37]: plotting.coeval_sliceplot(ionized_box, "xH_box");

32 Chapter 6. Contents

21cmFAST

Great! So again, we can just get the brightness temp:

[38]: brightness_temp = p21c.brightness_temperature(
ionized_box = ionized_box,
perturbed_field = perturbed_field,
spin_temp = spin_temp

)

Now lets plot our brightness temperature, which has been evolved from high redshift with spin temperature fluctuations:

[39]: plotting.coeval_sliceplot(brightness_temp);

We can also check what the result would have been if we had limited the maximum redshift of heating. Note that
this recalculates all previous spin temperature and ionized boxes, because they depend on both z_heat_max and
zprime_step_factor.

[40]: ionized_box = p21c.ionize_box(
spin_temp = spin_temp,

(continues on next page)

6.3. Tutorials and FAQs 33

21cmFAST

(continued from previous page)

zprime_step_factor=1.05,
z_heat_max = 20.0

)

brightness_temp = p21c.brightness_temperature(
ionized_box = ionized_box,
perturbed_field = perturbed_field,
spin_temp = spin_temp

)

plotting.coeval_sliceplot(brightness_temp);

2020-02-29 15:13:08,824 | INFO | Existing init_boxes found and read in␣
→˓(seed=521414794440).
2020-02-29 15:13:08,840 | INFO | Existing z=19.62816486020931 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:11,438 | INFO | Existing z=18.645871295437438 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:11,447 | INFO | Existing z=19.62816486020931 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:14,041 | INFO | Existing z=17.71035361470232 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:14,050 | INFO | Existing z=18.645871295437438 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:16,667 | INFO | Existing z=16.81938439495459 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:16,675 | INFO | Existing z=17.71035361470232 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:19,213 | INFO | Existing z=15.970842280909132 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:19,222 | INFO | Existing z=16.81938439495459 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:21,756 | INFO | Existing z=15.162706934199171 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:21,764 | INFO | Existing z=15.970842280909132 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:24,409 | INFO | Existing z=14.393054223046828 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:24,417 | INFO | Existing z=15.162706934199171 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:26,938 | INFO | Existing z=13.66005164099698 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:26,947 | INFO | Existing z=14.393054223046828 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:29,504 | INFO | Existing z=12.961953943806646 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:29,517 | INFO | Existing z=13.66005164099698 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:32,163 | INFO | Existing z=12.297098994101567 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:32,171 | INFO | Existing z=12.961953943806646 spin_temp boxes found and␣
→˓read in (seed=521414794440).

(continues on next page)

34 Chapter 6. Contents

21cmFAST

(continued from previous page)

2020-02-29 15:13:34,704 | INFO | Existing z=11.663903803906255 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:34,712 | INFO | Existing z=12.297098994101567 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:37,257 | INFO | Existing z=11.060860765625003 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:37,266 | INFO | Existing z=11.663903803906255 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:39,809 | INFO | Existing z=10.486534062500002 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:39,817 | INFO | Existing z=11.060860765625003 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:42,378 | INFO | Existing z=9.939556250000003 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:42,387 | INFO | Existing z=10.486534062500002 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:44,941 | INFO | Existing z=9.418625000000002 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:44,950 | INFO | Existing z=9.939556250000003 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:47,518 | INFO | Existing z=8.922500000000001 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:47,528 | INFO | Existing z=9.418625000000002 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:50,077 | INFO | Existing z=8.450000000000001 perturb_field boxes found␣
→˓and read in (seed=521414794440).
2020-02-29 15:13:50,086 | INFO | Existing z=8.922500000000001 spin_temp boxes found and␣
→˓read in (seed=521414794440).
2020-02-29 15:13:52,626 | INFO | Existing z=8.0 perturb_field boxes found and read in␣
→˓(seed=521414794440).
2020-02-29 15:13:52,762 | INFO | Existing brightness_temp box found and read in␣
→˓(seed=521414794440).

As we can see, it’s very similar!

6.3. Tutorials and FAQs 35

21cmFAST

6.3.2 Running and Plotting LightCones

This tutorial follows on from the coeval cube tutorial, and provides an introduction to creating lightcones with
21cmFAST. If you are new to 21cmFAST you should go through the coeval cube tutorial first.

There are two ways of creating lightcones in 21cmFAST: manual and automatic. The manual way involves evolving a
coeval simulation through redshift and saving slices of it into a lightcone array. The advantage of this method is that
one can precisely choose the redshift nodes to simulate and decide on interpolation methods. However, in this tutorial,
we will focus on the single function that is included to do this for you: run_lightcone.

The function takes a few different arguments, most of which will be familiar to you if you’ve gone through the co-
eval tutorial. All simulation parameters can be passed (i.e. user_params, cosmo_params, flag_options and
astro_params). As an alternative to the first two, an InitialConditions and/or PerturbField box can be passed.

Furthermore, the evolution can be managed with the zprime_step_factor and z_heat_max arguments.

Finally, the final minimum redshift of the lightcone is set by the redshift argument, and the maximum redshift of the
lightcone is defined by the max_redshift argument (note that this is not the maximum redshift evaluated, which is
controlled by z_heat_max, merely the maximum saved into the returned lightcone).

You can specify which 3D quantities are interpolated as lightcones, and which should be saved as global parameters.

Let’s see what it does. We won’t use the spin temperature, just to get a simple toy model:

[1]: import py21cmfast as p21c
from py21cmfast import plotting
import os

print(f"21cmFAST version is {p21c.__version__}")

21cmFAST version is 3.0.0.dev2

[2]: lightcone = p21c.run_lightcone(
redshift = 7.0,
max_redshift = 12.0,
user_params = {"HII_DIM":150, "BOX_LEN": 600},
lightcone_quantities=("brightness_temp", 'density'),
global_quantities=("brightness_temp", 'density', 'xH_box'),
direc='_cache'

)

[3]: plotting.lightcone_sliceplot(lightcone);

36 Chapter 6. Contents

21cmFAST

[4]: plotting.lightcone_sliceplot(lightcone, "density")

[4]: (<Figure size 432x288 with 2 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f5e93aaa4d0>)

Simple!

You can also save lightcones:

[5]: filename = lightcone.save(direc='_cache')

[6]: print(os.path.basename(filename))

LightCone_z7.0_da45d92043dfdc0c14f34f3ded434358_r287478667967.h5

[1]: import numpy as np
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import py21cmfast as p21c

#import logging
#logger = logging.getLogger("21cmFAST")
#logger.setLevel(logging.INFO)

random_seed = 1993

EoR_colour = matplotlib.colors.LinearSegmentedColormap.from_list('mycmap',\
[(0, 'white'),(0.33, 'yellow'),(0.5, 'orange'),(0.68, 'red'),\
(0.83333, 'black'),(0.9, 'blue'),(1, 'cyan')])

plt.register_cmap(cmap=EoR_colour)

This result was obtained using 21cmFAST at commit 2bb4807c7ef1a41649188a3efc462084f2e3b2e0

6.3. Tutorials and FAQs 37

21cmFAST

6.3.3 Fiducial and lightcones

Let’s fix the initial condition for this tutorial.

[2]: output_dir = '/home/yqin/aida/hybrid/mini-halos/'
HII_DIM = 128
BOX_LEN = 250

USE_FFTW_WISDOM make FFT faster
user_params = {"HII_DIM":HII_DIM, "BOX_LEN": BOX_LEN, "USE_FFTW_WISDOM": True}

initial_conditions = p21c.initial_conditions(user_params=user_params,random_seed=random_
→˓seed, direc=output_dir)

Let’s run a ‘fiducial’ model and see its lightcones

Note that the reference model has

pow(10, "F_STAR7_MINI") = pow(10, "F_STAR10") / pow(1000,ALPHA_STAR) * 10 # 10 times␣
→˓enhancement
pow(10, "F_ESC7_MINI") = pow(10, "F_ESC10") / pow(1000,ALPHA_ESC) / 10 # 0.1 times␣
→˓enhancement to balance the 10 times enhanced Ngamma
pow(10, "L_X_MINI") = pow(10, "L_X")
1 - "F_H2_SHIELD" = 1

[3]: # the lightcones we want to plot later together with their color maps and min/max
lightcone_quantities = ('brightness_temp','Ts_box','xH_box',"dNrec_box",'z_re_box',
→˓'Gamma12_box','J_21_LW_box',"density")
cmaps = [EoR_colour,'Reds','magma','magma','magma','cubehelix','cubehelix','viridis']
vmins = [-150, 1e1, 0, 0, 5, 0, 0, -1]
vmaxs = [30, 1e3, 1, 2, 9, 1,10, 1]

set necessary flags for using minihalos and astro parameter
astro_params_fid = {'ALPHA_ESC': 0.0, 'F_ESC10': -1.222, 'F_ESC7_MINI' : -2.222,

'ALPHA_STAR': 0.5,'F_STAR10': -1.25, 'F_STAR7_MINI': -1.75,
'L_X': 40.5, 'L_X_MINI': 40.5, 'NU_X_THRESH': 500.0, 'F_H2_SHIELD':␣

→˓0.0}
flag_options_fid = {"INHOMO_RECO":True, 'USE_MASS_DEPENDENT_ZETA':True, 'USE_TS_FLUCT':
→˓True, 'USE_MINI_HALOS':True}

lightcone_fid = p21c.run_lightcone(
redshift = 5.5,
init_box = initial_conditions,
flag_options = flag_options_fid,
astro_params = astro_params_fid,
lightcone_quantities=lightcone_quantities,
global_quantities=lightcone_quantities,
random_seed = random_seed,
direc = output_dir

)

fig, axs = plt.subplots(len(lightcone_quantities),1,
figsize=(getattr(lightcone_fid, lightcone_quantities[0]).shape[2]*0.01,

getattr(lightcone_fid, lightcone_quantities[0]).shape[1]*0.
→˓01*len(lightcone_quantities))) (continues on next page)

38 Chapter 6. Contents

21cmFAST

(continued from previous page)

for ii, lightcone_quantity in enumerate(lightcone_quantities):
axs[ii].imshow(getattr(lightcone_fid, lightcone_quantity)[1],

vmin=vmins[ii], vmax=vmaxs[ii],cmap=cmaps[ii])
axs[ii].text(1, 0.05, lightcone_quantity,horizontalalignment='right',

→˓verticalalignment='bottom',
transform=axs[ii].transAxes,color = 'red',backgroundcolor='white',fontsize =␣

→˓15)
axs[ii].xaxis.set_tick_params(labelsize=0)
axs[ii].yaxis.set_tick_params(labelsize=0)

plt.tight_layout()
fig.subplots_adjust(hspace = 0.01)

varying parameters

let’s vary paremeters that describe mini-halos and see the impact to the global signal

We keep other parameters fixed and vary one of following by a factor of 0.1, 0.5, 2 and 10:

pow(10, "F_STAR7_MINI")
pow(10, "F_ESC7_MINI")
pow(10, "L_X_MINI")
1 - "F_H2_SHIELD"

We also have a NOmini model where mini-halos are not included

[8]: #defining those color, linstyle, blabla
linestyles = ['-', '-',':','-.','-.',':']
colors = ['gray','black','#e41a1c','#377eb8','#e41a1c','#377eb8']
lws = [1,3,2,2,2,2]

(continues on next page)

6.3. Tutorials and FAQs 39

21cmFAST

(continued from previous page)

textss = ['varying '+r'$f_{*,7}^{\rm mol}$',\
'varying '+r'$f_{\rm esc}^{\rm mol}$',\
'varying '+r'$L_{\rm x}^{\rm mol}$',\
'varying '+r'$1-f_{\rm H_2}^{\rm shield}$']

factorss = [[0, 1, 0.1, 0.5, 2, 10],] * len(textss)
labelss = [['NOmini', 'reference', 'x0.1', 'x0.5', 'x2', 'x10'],] * len(textss)

Note that I’ve run these simulations in parallel before this tutorial. With these setup, each took ~6h to finish. Here,
running means read the cached outputs.

global properties

[86]: global_quantities = ('brightness_temp','Ts_box','xH_box',"dNrec_box",'z_re_box','Gamma12_
→˓box','J_21_LW_box',"density")
#choose some to plot...
plot_quantities = ('brightness_temp','Ts_box','xH_box',"dNrec_box",'Gamma12_box','J_21_
→˓LW_box')
ymins = [-120, 1e1, 0, 0, 0, 0]
ymaxs = [30, 1e3, 1, 1, 1,10]

fig, axss = plt.subplots(len(plot_quantities), len(labelss),
sharex=True, figsize=(4*len(labelss),2*len(global_quantities)))

for pp, texts in enumerate(textss):
labels = labelss[pp]
factors = factorss[pp]
axs = axss[:,pp]
for kk, label in enumerate(labels):

flag_options = flag_options_fid.copy()
astro_params = astro_params_fid.copy()
factor = factors[kk]
if label == 'NOmini':

flag_options.update({'USE_MINI_HALOS': False})
else:

flag_options.update({'USE_MINI_HALOS': True})
if pp == 0:

astro_params.update({'F_STAR7_MINI': astro_params_fid['F_STAR7_MINI']+np.
→˓log10(factor)})

elif pp == 1:
astro_params.update({'F_ESC7_MINI': astro_params_fid['F_ESC7_MINI']+np.

→˓log10(factor)})
elif pp == 2:

astro_params.update({'L_X_MINI': astro_params_fid['L_X_MINI']+np.
→˓log10(factor)})

else:
if factor > 1: continue # can't do negative F_H2_SHIELD
astro_params.update({'F_H2_SHIELD': 1. - (1. - astro_params_fid['F_H2_

→˓SHIELD']) * factor})
if label == 'reference':

lightcone = lightcone_fid
else:

(continues on next page)

40 Chapter 6. Contents

21cmFAST

(continued from previous page)

lightcone = p21c.run_lightcone(
redshift = 5.5,
init_box = initial_conditions,
flag_options = flag_options,
astro_params = astro_params,
global_quantities=global_quantities,
random_seed = random_seed,
direc = output_dir

)

freqs = 1420.4 / (np.array(lightcone.node_redshifts) + 1.)
for jj, global_quantity in enumerate(plot_quantities):

axs[jj].plot(freqs, getattr(lightcone, 'global_%s'%global_quantity.replace('_
→˓box','')),

color=colors[kk],linestyle=linestyles[kk], label = labels[kk],
→˓lw=lws[kk])

axs[0].text(0.01, 0.99, texts,horizontalalignment='left',verticalalignment='top',
transform=axs[0].transAxes,fontsize = 15)

for jj, global_quantity in enumerate(plot_quantities):
axs[jj].set_ylim(ymins[jj], ymaxs[jj])

axs[-1].set_xlabel('Frequency/MHz',fontsize=15)
axs[-1].xaxis.set_tick_params(labelsize=15)

axs[0].set_xlim(1420.4 / (35 + 1.), 1420.4 / (5.5 + 1.))
zlabels = np.array([6, 7, 8, 10, 13, 18, 25, 35])
ax2 = axs[0].twiny()
ax2.set_xlim(axs[0].get_xlim())
ax2.set_xticks(1420.4 / (zlabels + 1.))
ax2.set_xticklabels(zlabels.astype(np.str))
ax2.set_xlabel("redshift",fontsize=15)
ax2.xaxis.set_tick_params(labelsize=15)
ax2.grid(False)

if pp == 0:
axs[0].legend(loc='lower right', ncol=2,fontsize=13,fancybox=True,frameon=True)
for jj, global_quantity in enumerate(plot_quantities):

axs[jj].set_ylabel('global_%s'%global_quantity.replace('_box',''),
→˓fontsize=15)

axs[jj].yaxis.set_tick_params(labelsize=15)
else:

for jj, global_quantity in enumerate(plot_quantities):
axs[jj].set_ylabel('global_%s'%global_quantity.replace('_box',''),fontsize=0)
axs[jj].yaxis.set_tick_params(labelsize=0)

plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

6.3. Tutorials and FAQs 41

21cmFAST

[86]:

21-cm power spectra

[87]: # define functions to calculate PS, following py21cmmc
from powerbox.tools import get_power

def compute_power(
box,
length,
n_psbins,
log_bins=True,

(continues on next page)

42 Chapter 6. Contents

21cmFAST

(continued from previous page)

ignore_kperp_zero=True,
ignore_kpar_zero=False,
ignore_k_zero=False,

):
Determine the weighting function required from ignoring k's.
k_weights = np.ones(box.shape, dtype=np.int)
n0 = k_weights.shape[0]
n1 = k_weights.shape[-1]

if ignore_kperp_zero:
k_weights[n0 // 2, n0 // 2, :] = 0

if ignore_kpar_zero:
k_weights[:, :, n1 // 2] = 0

if ignore_k_zero:
k_weights[n0 // 2, n0 // 2, n1 // 2] = 0

res = get_power(
box,
boxlength=length,
bins=n_psbins,
bin_ave=False,
get_variance=False,
log_bins=log_bins,
k_weights=k_weights,

)

res = list(res)
k = res[1]
if log_bins:

k = np.exp((np.log(k[1:]) + np.log(k[:-1])) / 2)
else:

k = (k[1:] + k[:-1]) / 2

res[1] = k
return res

def powerspectra(brightness_temp, n_psbins=50, nchunks=10, min_k=0.1, max_k=1.0,␣
→˓logk=True):

data = []
chunk_indices = list(range(0,brightness_temp.n_slices,round(brightness_temp.n_slices␣

→˓/ nchunks),))

if len(chunk_indices) > nchunks:
chunk_indices = chunk_indices[:-1]

chunk_indices.append(brightness_temp.n_slices)

for i in range(nchunks):
start = chunk_indices[i]
end = chunk_indices[i + 1]
chunklen = (end - start) * brightness_temp.cell_size

power, k = compute_power(

(continues on next page)

6.3. Tutorials and FAQs 43

21cmFAST

(continued from previous page)

brightness_temp.brightness_temp[:, :, start:end],
(BOX_LEN, BOX_LEN, chunklen),
n_psbins,
log_bins=logk,

)
data.append({"k": k, "delta": power * k ** 3 / (2 * np.pi ** 2)})

return data

[96]: # do 5 chunks but only plot 1 - 4, the 0th has no power for minihalo models where xH=0
nchunks = 4

fig, axss = plt.subplots(nchunks, len(labelss), sharex=True,sharey=True,
→˓figsize=(4*len(labelss),3*(nchunks)),subplot_kw={"xscale":'log', "yscale":'log'})

for pp, texts in enumerate(textss):
labels = labelss[pp]
factors = factorss[pp]
axs = axss[:,pp]
for kk, label in enumerate(labels):

flag_options = flag_options_fid.copy()
astro_params = astro_params_fid.copy()
factor = factors[kk]
if label == 'NOmini':

flag_options.update({'USE_MINI_HALOS': False})
else:

flag_options.update({'USE_MINI_HALOS': True})
if pp == 0:

astro_params.update({'F_STAR7_MINI': astro_params_fid['F_STAR7_MINI']+np.
→˓log10(factor)})

elif pp == 1:
astro_params.update({'F_ESC7_MINI': astro_params_fid['F_ESC7_MINI']+np.

→˓log10(factor)})
elif pp == 2:

astro_params.update({'L_X_MINI': astro_params_fid['L_X_MINI']+np.
→˓log10(factor)})

else:
if factor > 1: continue # can't do negative F_H2_SHIELD
astro_params.update({'F_H2_SHIELD': 1. - (1. - astro_params_fid['F_H2_

→˓SHIELD']) * factor})
if label == 'reference':

lightcone = lightcone_fid
else:

lightcone = p21c.run_lightcone(
redshift = 5.5,
init_box = initial_conditions,
flag_options = flag_options,
astro_params = astro_params,
global_quantities=global_quantities,
random_seed = random_seed,
direc = output_dir

)

(continues on next page)

44 Chapter 6. Contents

21cmFAST

(continued from previous page)

PS = powerspectra(lightcone)
for ii in range(nchunks):

axs[ii].plot(PS[ii+1]['k'], PS[ii+1]['delta'], color=colors[kk],
→˓linestyle=linestyles[kk], label = labels[kk],lw=lws[kk])

if pp == len(textss)-1 and kk == 0:
axs[ii].text(0.99, 0.01, 'Chunk-%02d'%(ii+1),horizontalalignment='right',

→˓verticalalignment='bottom',
transform=axs[ii].transAxes,fontsize = 15)

axs[0].text(0.01, 0.99, texts,horizontalalignment='left',verticalalignment='top',
transform=axs[0].transAxes,fontsize = 15)

axs[-1].set_xlabel("k [Mpc$^{-3}$]",fontsize=15)
axs[-1].xaxis.set_tick_params(labelsize=15)

if pp == 0:
for ii in range(nchunks):

axs[ii].set_ylim(2e-1, 2e2)
axs[ii].set_ylabel("$k^3 P$", fontsize=15)
axs[ii].yaxis.set_tick_params(labelsize=15)

else:
for ii in range(nchunks-1):

axs[ii].set_ylim(2e-1, 2e2)
axs[ii].set_ylabel("$k^3 P$", fontsize=0)
axs[ii].yaxis.set_tick_params(labelsize=0)

axss[0,0].legend(loc='lower left', ncol=2,fontsize=13,fancybox=True,frameon=True)
plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

6.3. Tutorials and FAQs 45

21cmFAST

[96]:

Now you know how minihalo can shape the 21-cm signal!

[]:

6.3.4 Accessing evolutionary Coeval data

When you run run_coeval with non-saturated spin temperature fluctuations (or various other options, such as in-
homogeneous recombinations), or you run run_lightcone, many coeval simulation cubes at higher redshifts are
computed, to generate the evolution up to the redshift you requested (or in the case of lightcones, to be interpolated
over). By default, with write=True, all these boxes are saved to the cache (or a folder of your choice). What is the
best way to access that data?

Looking at the output datafiles themselves (a bunch of .h5 files) is fairly confusing – the files are saved with names
based on inscrutable hashes. You can use the builtin command-line functionality 21cmfast query to identify what’s
what, but that can be a bit clunky. You could also just run run_coeval at the redshift you care about, with the same
input parameters – this will just return the cached object. But this is also a bit clunky, and requires you to know the
redshifts that were calculated during the evolution.

Never fear though – both the Coeval and LightCone objects have a get_cached_data() method that will find these
files for you! Let’s see how it works.

46 Chapter 6. Contents

21cmFAST

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import os

import py21cmfast as p21c

For plotting the cubes, we use the plotting submodule:
from py21cmfast import plotting

For interacting with the cache
from py21cmfast import cache_tools

import h5py
import numpy as np

[2]: print(f"Using 21cmFAST version {p21c.__version__}")

Using 21cmFAST version 3.0.3

We’re going to clear the cache, so that this notebook produces the same output every time. You probably shouldn’t do
this yourself (unless your cache is getting too big!).

We also set the default output directory to _cache/ to keep all of the outputs of this notebook in one place:

[3]: if not os.path.exists('_cache'):
os.mkdir('_cache')

p21c.config['direc'] = '_cache'
cache_tools.clear_cache(direc="_cache")

Create an example box

We first run a coeval box and lightcone to have something to read later. It’s a really small and unrealistic simulation
(the point here is to show how to use the cached files, not to get something that looks pretty!):

[20]: coeval = p21c.run_coeval(
redshift = 25.0,
user_params = {"HII_DIM": 30, "BOX_LEN": 30},
flag_options={"USE_TS_FLUCT": True},
random_seed=1978,
write=True

)

lightcone = p21c.run_lightcone(
redshift = 25.0,
max_redshift = 35.0,
user_params = {"HII_DIM": 30, "BOX_LEN": 30},
flag_options={"USE_TS_FLUCT": True},
random_seed=1978,
lightcone_quantities=("brightness_temp", 'density'),
global_quantities=("brightness_temp", 'density', 'xH_box'),
write=True

)

6.3. Tutorials and FAQs 47

21cmFAST

Accessing cached data from Coeval

The function to use here is get_cached_data. To use it, pass the (approximate) redshift that you want, and the kind
of output that you want (init, perturb_field, ionized_box, spin_temp or brightness_temp). The method
will grab the closest redshift to the one you pass that was actually calculated in the evolution of the given box. By
default, the returned object will be empty, and you can read in the data manually. To read in the data automatically, set
load_data=True. Let’s see it in action:

[21]: brightness_temp_z25 = coeval.get_cached_data(redshift=25.1, kind='brightness_temp', load_
→˓data=True)

The output is an OutputStruct of whatever kind you requested:

[22]: print(brightness_temp_z25)

BrightnessTemp(UserParams(BOX_LEN:30, DIM:90, HII_DIM:30, HMF:1, NO_RNG:False, N_THREADS:
→˓1, PERTURB_ON_HIGH_RES:False, POWER_SPECTRUM:0, USE_FFTW_WISDOM:False, USE_
→˓INTERPOLATION_TABLES:False, USE_RELATIVE_VELOCITIES:False);

CosmoParams(OMb:0.04897468161869667, OMm:0.30964144154550644, POWER_INDEX:0.9665,
→˓ SIGMA_8:0.8102, hlittle:0.6766);

random_seed:1978;
redshift:25.0;
FlagOptions(INHOMO_RECO:False, M_MIN_in_Mass:False, PHOTON_CONS:False, SUBCELL_

→˓RSD:False, USE_HALO_FIELD:False, USE_MASS_DEPENDENT_ZETA:False, USE_MINI_HALOS:False,␣
→˓USE_TS_FLUCT:True);

AstroParams(ALPHA_ESC:-0.5, ALPHA_STAR:0.5, F_ESC10:0.1, F_ESC7_MINI:0.01, F_H2_
→˓SHIELD:0.0, F_STAR10:0.05011872336272722, F_STAR7_MINI:0.01, HII_EFF_FACTOR:30.0, ION_
→˓Tvir_MIN:49999.9995007974, L_X:1e+40, L_X_MINI:1e+40, M_TURN:501187233.6272715, NU_X_
→˓THRESH:500.0, N_RSD_STEPS:20, R_BUBBLE_MAX:15.0, X_RAY_SPEC_INDEX:1.0, X_RAY_Tvir_MIN:
→˓49999.9995007974, t_STAR:0.5))

We can proceed to plot the brightness temperature that we read from cache – and since we only calculated up to 𝑧 = 25
for the Coeval, the cache should be pointing to the same brightness temperature:

[23]: fig, ax = plt.subplots(1,2, figsize=(10,4))
plotting.coeval_sliceplot(coeval, ax=ax[0], fig=fig)
plotting.coeval_sliceplot(brightness_temp_z25, ax=ax[1], fig=fig)
plt.tight_layout()

48 Chapter 6. Contents

21cmFAST

Of course, we could have pulled the cached data from a higher redshift:

[30]: st_z35 = coeval.get_cached_data(redshift=35.0, kind='spin_temp', load_data=True)
st_z25 = coeval.get_cached_data(redshift=25.0, kind='spin_temp', load_data=True)

fig, ax = plt.subplots(1,2, figsize=(10,4))
plotting.coeval_sliceplot(st_z35, ax=ax[0], kind='Ts_box')
ax[0].set_title("z=35")
plotting.coeval_sliceplot(st_z25, ax=ax[1], kind='Ts_box')
ax[1].set_title("z=25")
plt.tight_layout();

Here we see evolution in the spin temperature field. Note that we can’t look at the brightness temperature field at 𝑧 = 25
because it was never saved as part of the evolution of the coeval box (only the ionization field and spin temperature field
are saved). This is different in run_lightcone – all boxes are cached at every evaluated redshift for the lightcone.

[8]: with h5py.File(folderdata+"/"+filename, "r") as file:
print(file.keys())
print(file["cache"].keys()) #this will give you the kinds that were saved
print(file["cache"]["perturb_field"].keys()) #this will give you the z for this kind
print(file["cache"]["init"].keys()) #ICs appear as z=0 as they do not depend on z
delta_pert= list(file["cache"]["perturb_field"]["z25.00"]["density"])

from scipy import ndimage

fig, ax = plt.subplots(1,2, figsize=(10,4))
plotting.coeval_sliceplot(coeval, ax=ax[0], fig=fig, kind="density", slice_axis=0);
rotated_delta = ndimage.rotate(delta_pert[0], 90) #the coeval boxes are rotated w.r.t.␣
→˓numpy array
im1=ax[1].imshow(rotated_delta, origin="upper")
plt.tight_layout() #identical!

<KeysViewHDF5 ['cache']>
<KeysViewHDF5 ['init', 'perturb_field']>
<KeysViewHDF5 ['z25.00']>
<KeysViewHDF5 ['z0.00']>

6.3. Tutorials and FAQs 49

21cmFAST

Accessing Cached Data from a Lightcone

The process is essentially exactly the same for a lightcone:

[31]: brightness_temp_z25 = lightcone.get_cached_data(redshift=25.0, kind='brightness_temp',␣
→˓load_data=True)
brightness_temp_z35 = lightcone.get_cached_data(redshift=35.0, kind='brightness_temp',␣
→˓load_data=True)

[32]: fig, ax = plt.subplots(1,2, figsize=(10,4))
plotting.coeval_sliceplot(brightness_temp_z35, ax=ax[0])
ax[0].set_title("z=35")
plotting.coeval_sliceplot(brightness_temp_z25, ax=ax[1])
ax[1].set_title("z=25")
plt.tight_layout();

50 Chapter 6. Contents

21cmFAST

Note that this time, we are able to access the brightness temperature data from the cache, because lightcones save it all.

In fact, we could go further than this, and plot all the evaluated brightness temperatures. We can get the list of redshifts
evaluated from the lightcone directly as node_redshifts:

[35]: fig, ax = plt.subplots(len(lightcone.node_redshifts)//3, 3, figsize=(14,4*len(lightcone.
→˓node_redshifts)//3))

for i, z in enumerate(lightcone.node_redshifts):
Tbz = lightcone.get_cached_data(redshift=z, kind='brightness_temp', load_data=True)
plotting.coeval_sliceplot(Tbz, ax=ax.flatten()[i])
ax.flatten()[i].set_title(f"z={z:.2f}")

plt.tight_layout()

6.3. Tutorials and FAQs 51

21cmFAST

52 Chapter 6. Contents

21cmFAST

To illustrate another way of accessing these cached boxes, we can simply run run_coeval at a particular redshift, with
the same input arguments. Let’s choose about 𝑧 ∼ 30:

[47]: z30 = lightcone.node_redshifts[8] # the closest to 30

Run the coeval. This will just find the box in cache, since it has exactly the same␣
→˓parameters.
coeval_z30 = p21c.run_coeval(

redshift = z30,
user_params = {"HII_DIM": 30, "BOX_LEN": 30},
flag_options={"USE_TS_FLUCT": True},
random_seed=1978,
write=False

)

Compare that to what we get from the lightcone cache
lc_z30 = lightcone.get_cached_data(redshift=30, kind='brightness_temp', load_data=True)

fig, ax = plt.subplots(1,2, figsize=(10,4))
plotting.coeval_sliceplot(coeval_z30, ax=ax[0])
plotting.coeval_sliceplot(lc_z30, ax=ax[1])
plt.tight_layout()

These are exactly the same. Note that in fact, the data comes from exactly the same file (the lightcone ‘cache’ is just a
pointer to the standard file cache, just easier to access).

Gathering cached data into one file

As we’ve already noted, when you use get_cached_data, the Coeval or Lightcone objects just know how to access
a specific cached file – usually found in your configured cache directory. This can be a little brittle – if the cache files
are removed, the Coeval object won’t be able to access that data any more. To protect against this, you can gather all
the evolutionary data into a single file. It’s typically easiest if you first save the lightcone:

[79]: fname = lightcone.save(fname='lightcone.h5', direc='_cache')

Then, you can gather the cached data into that file:

6.3. Tutorials and FAQs 53

21cmFAST

[80]: lightcone.gather(
fname=fname,
kinds=("brightness_temp", "init"),
direc='_cache',

);

The above gathered the brightness temperature and initial conditions data, and saved it into the file _cache/
lightcone.h5. The kinds can be any of those allowed in get_cached_data. You can also call it again to gather
more data:

[76]: lightcone.gather(fname=fname, kinds=('ionized_box',));

The original cached data files are left on-disk, which duplicates data. If you’re sure you want to remove them, pass
clean=True to gather.

The structure of the gathered data in the file is the following:

[64]: with h5py.File(fname, "r") as fl:
print(fl['cache'].keys())
print(fl['cache']['brightness_temp'].keys())
print(fl['cache']['brightness_temp']['z25.00'].keys())

tb_25 = fl['cache']['brightness_temp']['z25.00']['brightness_temp'][...]

<KeysViewHDF5 ['brightness_temp', 'init', 'ionized_box']>
<KeysViewHDF5 ['z25.00', 'z25.52', 'z26.05', 'z26.59', 'z27.14', 'z27.71', 'z28.28',
→˓'z28.87', 'z29.46', 'z30.07', 'z30.69', 'z31.33', 'z31.97', 'z32.63', 'z33.31', 'z33.99
→˓', 'z34.69', 'z35.41']>
<KeysViewHDF5 ['brightness_temp']>

We’ve read in the brightness temperature at the final redshift. We can compare this to the coeval box directly evaluated
there:

[71]: T21minplot=-10.0
T21maxplot=10.0

fig, ax = plt.subplots(1,2, figsize=(10,4))
plotting.coeval_sliceplot(

coeval,
ax=ax[0], fig=fig, kind="brightness_temp", slice_axis=0,
vmin=T21minplot, vmax=T21maxplot, cmap = "magma"

)
ax[1].imshow(

tb_25.T[:, :, 0],
origin="lower", vmin=T21minplot, vmax=T21maxplot, cmap = "magma"

)
plt.tight_layout();

54 Chapter 6. Contents

21cmFAST

Again, they are equivalent.

[1]: import numpy as np
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import py21cmfast as p21c

from py21cmfast import global_params
from py21cmfast import plotting

random_seed = 1605

EoR_colour = matplotlib.colors.LinearSegmentedColormap.from_list('mycmap',\
[(0, 'white'),(0.33, 'yellow'),(0.5, 'orange'),(0.68, 'red'),\
(0.83333, 'black'),(0.9, 'blue'),(1, 'cyan')])

plt.register_cmap(cmap=EoR_colour)

This result was obtained using 21cmFAST at commit 2bb4807c7ef1a41649188a3efc462084f2e3b2e0

This notebook shows how to include the effect of the DM-baryon relative velocities, and the new EOS2021 parameters.

Based on Muñoz+21 (https://arxiv.org/abs/2110.13919). See https://drive.google.com/drive/folders/
1-50AO-i3arCnfHc22YWXJacs4u-xsPL6?usp=sharing for the large (1.5Gpc) AllGalaxies simulation with the
same parameters.

It is recommended to do the other tutorials first

6.3. Tutorials and FAQs 55

https://arxiv.org/abs/2110.13919
https://drive.google.com/drive/folders/1-50AO-i3arCnfHc22YWXJacs4u-xsPL6?usp=sharing
https://drive.google.com/drive/folders/1-50AO-i3arCnfHc22YWXJacs4u-xsPL6?usp=sharing

21cmFAST

6.3.5 Fiducial and lightcones

Let’s fix the initial condition for this tutorial.

[2]: output_dir = '/Users/julian/Dropbox/Research/EOS_21/'

HII_DIM = 64
BOX_LEN = 200 #cell size of ~3 Mpc or below for relative velocities

USE_FFTW_WISDOM make FFT faster AND use relative velocities. , 'USE_INTERPOLATION_TABLES
→˓': True or code is too slow
user_params = {"HII_DIM":HII_DIM, "BOX_LEN": BOX_LEN, "USE_FFTW_WISDOM": True, 'USE_
→˓INTERPOLATION_TABLES': True,

"FAST_FCOLL_TABLES": True,
"USE_RELATIVE_VELOCITIES": True, "POWER_SPECTRUM": 5}

#set FAST_FCOLL_TABLES to TRUE if using minihaloes, it speeds up the generation of␣
→˓tables by ~x30 (see Appendix of 2110.13919)
#USE_RELATIVE_VELOCITIES is important for minihaloes. If True, POWER_SPECTRUM has to be␣
→˓set to 5 (CLASS) to get the transfers.

initial_conditions = p21c.initial_conditions(user_params=user_params,
random_seed=random_seed,
direc=output_dir
#, regenerate=True

)

[3]: plotting.coeval_sliceplot(initial_conditions, "lowres_vcb");
plotting.coeval_sliceplot(initial_conditions, "lowres_density");

56 Chapter 6. Contents

21cmFAST

Let’s run a ‘fiducial’ model and see its lightcones

Note that the reference model has

F_STAR7_MINI ~ F_STAR10
and
F_ESC7_MINI ~ 1%, as low, but conservative fiducial
Also we take L_X_MINI=L_X out of simplicity (and ignorance)

[4]: # the lightcones we want to plot later together with their color maps and min/max
lightcone_quantities = ('brightness_temp','Ts_box','xH_box',"dNrec_box",'z_re_box',
→˓'Gamma12_box','J_21_LW_box',"density")
cmaps = [EoR_colour,'Reds','magma','magma','magma','cubehelix','cubehelix','viridis']
vmins = [-150, 1e1, 0, 0, 5, 0, 0, -1]
vmaxs = [30, 1e3, 1, 2, 9, 1,10, 1]

astro_params_vcb = {"ALPHA_ESC": -0.3, "F_ESC10": -1.35,
"ALPHA_STAR": 0.5, "F_STAR10": -1.25, "t_STAR" :0.5,
"F_STAR7_MINI": -2.5, "ALPHA_STAR_MINI": 0, "F_ESC7_MINI" : -1.35,
"L_X": 40.5, "L_X_MINI": 40.5, "NU_X_THRESH": 500.0,
"A_VCB": 1.0, "A_LW": 2.0}

astro_params_novcb=astro_params_vcb
astro_params_novcb.update({'A_VCB': 0.0})
#setting 'A_VCB': 0 sets to zero the effect of relative velocities (fiducial value is 1.0)
#the parameter 'A_LW' (with fid value of 2.0) does the same for LW feedback.

flag_options_fid = {"INHOMO_RECO":True, 'USE_MASS_DEPENDENT_ZETA':True, 'USE_TS_FLUCT':
→˓True,

'USE_MINI_HALOS':True, 'FIX_VCB_AVG':False}

(continues on next page)

6.3. Tutorials and FAQs 57

21cmFAST

(continued from previous page)

flag_options_fid_vavg = flag_options_fid
flag_options_fid_vavg.update({'FIX_VCB_AVG': True})
#the flag FIX_VCB_AVG side-steps the relative-velocity ICs, and instead fixes all␣
→˓velocities to some average value.
#It gets the background right but it's missing VAOs and 21cm power at large scales

[]: ZMIN=5.

lightcone_fid_vcb = p21c.run_lightcone(
redshift = ZMIN,
init_box = initial_conditions,
flag_options = flag_options_fid,
astro_params = astro_params_vcb,
lightcone_quantities=lightcone_quantities,
global_quantities=lightcone_quantities,
random_seed = random_seed,
direc = output_dir,
write=True#, regenerate=True

)

fig, axs = plt.subplots(len(lightcone_quantities),1,
figsize=(20,10))#(getattr(lightcone_fid_vcb, lightcone_quantities[0]).

→˓shape[2]*0.01,
#getattr(lightcone_fid_vcb, lightcone_quantities[0]).shape[1]*0.

→˓01*len(lightcone_quantities)))
for ii, lightcone_quantity in enumerate(lightcone_quantities):

axs[ii].imshow(getattr(lightcone_fid_vcb, lightcone_quantity)[1],
vmin=vmins[ii], vmax=vmaxs[ii],cmap=cmaps[ii])

axs[ii].text(1, 0.05, lightcone_quantity,horizontalalignment='right',
→˓verticalalignment='bottom',

transform=axs[ii].transAxes,color = 'red',backgroundcolor='white',fontsize =␣
→˓15)

axs[ii].xaxis.set_tick_params(labelsize=10)
axs[ii].yaxis.set_tick_params(labelsize=0)

plt.tight_layout()
fig.subplots_adjust(hspace = 0.01)

[]: #also run one without velocities and with fixed vcb=vavg (for comparison)

lightcone_fid_novcb = p21c.run_lightcone(
redshift = ZMIN,
init_box = initial_conditions,
flag_options = flag_options_fid,
astro_params = astro_params_novcb,
lightcone_quantities=lightcone_quantities,
global_quantities=lightcone_quantities,
random_seed = random_seed,

(continues on next page)

58 Chapter 6. Contents

21cmFAST

(continued from previous page)

direc = output_dir,
write=True#, regenerate=True

)

lightcone_fid_vcbavg = p21c.run_lightcone(
redshift = ZMIN,
init_box = initial_conditions,
flag_options = flag_options_fid_vavg,
astro_params = astro_params_vcb,
lightcone_quantities=lightcone_quantities,
global_quantities=lightcone_quantities,
random_seed = random_seed,
direc = output_dir,
write=True#, regenerate=True

)

[]:

[]: #plus run one with only atomic-cooling galaxies but same otherwise

flag_options_NOMINI=flag_options_fid
flag_options_NOMINI.update({'USE_MINI_HALOS': False})

lightcone_fid_NOMINI = p21c.run_lightcone(
redshift = ZMIN,
init_box = initial_conditions,
flag_options = flag_options_NOMINI,
astro_params = astro_params_vcb,
lightcone_quantities=lightcone_quantities,
global_quantities=lightcone_quantities,
random_seed = random_seed,
direc = output_dir,
write=True#, regenerate=True

)

[]: #compare vcb and novcb

fig, axs = plt.subplots(2 ,1,
figsize=(20,6))

axs[0].imshow(getattr(lightcone_fid_vcb, 'brightness_temp')[1],
vmin=vmins[0], vmax=vmaxs[0],cmap=cmaps[0])

axs[1].imshow(getattr(lightcone_fid_novcb, 'brightness_temp')[1],
vmin=vmins[0], vmax=vmaxs[0],cmap=cmaps[0])

axs[0].text(1, 0.05, 'vcb' ,horizontalalignment='right',verticalalignment='bottom',
transform=axs[0].transAxes,color = 'red',backgroundcolor='white',fontsize = 15)

axs[1].text(1, 0.05, 'novcb' ,horizontalalignment='right',verticalalignment='bottom',
transform=axs[1].transAxes,color = 'red',backgroundcolor='white',fontsize = 15)

axs[0].xaxis.set_tick_params(labelsize=10)
(continues on next page)

6.3. Tutorials and FAQs 59

21cmFAST

(continued from previous page)

axs[1].yaxis.set_tick_params(labelsize=0)
plt.tight_layout()
fig.subplots_adjust(hspace = 0.01)

[]: #plot tau

tau_vcb=tau_novcb=tau_NOMINI=np.array([])
for il,lightcone in enumerate([lightcone_fid_vcb,lightcone_fid_novcb,lightcone_fid_
→˓NOMINI]):

z_e=np.array([]);
tau_e=np.array([]);
for i in range(len(lightcone.node_redshifts)-1):

tauz=p21c.compute_tau(redshifts=lightcone.node_redshifts[-1:-2-i:-1],
global_xHI=lightcone.global_xHI[-1:-2-i:-1])

tau_e=np.append(tau_e,tauz)
z_e=np.append(z_e,lightcone.node_redshifts[-2-i])

#add lower zs where we manually set xH=1
zlow=np.linspace(lightcone.node_redshifts[-1]-0.1, 0.1, 14)
for zl in zlow:

tauz=p21c.compute_tau(redshifts=np.array([zl]), global_xHI=np.array([lightcone.
→˓global_xHI[-1]]))

tau_e=np.append([tauz],tau_e)
z_e=np.append([zl],z_e)

if(il==0):
tau_vcb=tau_e

elif (il==1):
tau_novcb=tau_e

else:
tau_NOMINI=tau_e

linestyles = ['-', '-.',':']
colors = ['black','gray','#377eb8']
lws = [3,1,2]

fig, axs = plt.subplots(1, 1, sharex=True, figsize=(8,4))

kk=0
axs.plot(z_e, tau_vcb, label = 'vcb',

color=colors[kk],linestyle=linestyles[kk], lw=lws[kk])
kk=1
axs.plot(z_e, tau_novcb, label = 'no vcb',

color=colors[kk],linestyle=linestyles[kk], lw=lws[kk])
kk=2
axs.plot(z_e, tau_NOMINI, label = 'no MINI',

color=colors[kk],linestyle=linestyles[kk],lw=lws[kk])

(continues on next page)

60 Chapter 6. Contents

21cmFAST

(continued from previous page)

axs.set_ylim(0., 0.1)
axs.set_xlabel('redshift',fontsize=15)
axs.xaxis.set_tick_params(labelsize=15)

axs.set_xlim(0.,20.)
axs.set_ylabel('$\\tau$',fontsize=15)
axs.yaxis.set_tick_params(labelsize=15)

plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

tauPmin=0.0561-0.0071
tauPmax=0.0561+0.0071
axs.axhspan(tauPmin, tauPmax, alpha=0.34, color='black')
axs.grid()

#Planck2020: tau=0.0561±0.0071

[]: #check that the tau z=15-30 is below 0.02 as Planck requires
print(z_e[-1],z_e[55])
tau_vcb[-1]-tau_vcb[55]

[]: linestyles = ['-', '-.',':']
colors = ['black','gray','#377eb8']
lws = [3,1,2]
labels = ['vcb', 'no vcb', 'no MINI']

fig, axs = plt.subplots(1, 1, sharex=True, figsize=(8,4))

for kk,lightcone in enumerate([lightcone_fid_vcb,lightcone_fid_novcb,lightcone_fid_
→˓NOMINI]):

axs.plot(lightcone.node_redshifts, lightcone.global_xHI, label = labels[kk],
color=colors[kk],linestyle=linestyles[kk], lw=lws[kk])

axs.set_ylim(0., 1.)
axs.set_xlabel('redshift',fontsize=15)
axs.xaxis.set_tick_params(labelsize=15)

axs.set_xlim(5.,20.)
axs.set_ylabel('x_{HI}',fontsize=15)
axs.yaxis.set_tick_params(labelsize=15)

plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

axs.grid()

[]:

6.3. Tutorials and FAQs 61

21cmFAST

[]: #choose a redshift to print coeval slices and see if there are VAOs. Usually best then␣
→˓T21~T21min/2
zz=zlist21[40]
print(zz)

[]: #We plot a coeval box, but we compare the vcb case against the vcb=vavg, since the no␣
→˓velocity (vcb=0) case has a background evolution that is too different.
coeval_fid_vcb = p21c.run_coeval(

redshift = zz,
init_box = initial_conditions,
flag_options = flag_options_fid,
astro_params = astro_params_vcb,
random_seed = random_seed,
direc = output_dir,
write=True#, regenerate=True

)

coeval_fid_vcbavg = p21c.run_coeval(
redshift = zz,
init_box = initial_conditions,
flag_options = flag_options_fid_vavg,
astro_params = astro_params_vcb,
random_seed = random_seed,
direc = output_dir,
write=True#, regenerate=True

)

[]:

[]: T21slice_vcb=coeval_fid_vcb.brightness_temp
T21avg_vcb = np.mean(T21slice_vcb)
dT21slice_vcb = T21slice_vcb - T21avg_vcb

T21slice_novcb=coeval_fid_vcbavg.brightness_temp
T21avg_novcb = np.mean(T21slice_novcb)
dT21slice_novcb = T21slice_novcb - T21avg_novcb

sigma21=np.sqrt(np.var(dT21slice_vcb))

T21maxplot = 3.0*sigma21
T21minplot = -2.0 * sigma21

origin = 'lower'
extend = 'both'

origin = None
extend = 'neither'

(continues on next page)

62 Chapter 6. Contents

21cmFAST

(continued from previous page)

xx = np.linspace(0, BOX_LEN, HII_DIM, endpoint=False)
yy = xx

indexv=0

fig, ax = plt.subplots(2, 2, constrained_layout=True, figsize=(10,8),
sharex='col', sharey='row',
gridspec_kw={'hspace': 0, 'wspace': 0})

cs0=ax[0,0].contourf(xx, yy, dT21slice_novcb[indexv], extend=extend, origin=origin,
vmin=T21minplot, vmax=T21maxplot,cmap='bwr')

fig.colorbar(cs0, ax=ax[0,0], shrink=0.9, location='left')
cs1=ax[0,1].contourf(xx, yy, dT21slice_vcb[indexv], extend=extend, origin=origin,

vmin=T21minplot, vmax=T21maxplot,cmap='bwr')
fig.colorbar(cs1, ax=ax[0,1], shrink=0.9)

deltaslice=initial_conditions.lowres_density
deltaavg = np.mean(deltaslice)
ddeltaslice = deltaslice - deltaavg

vcbslice=initial_conditions.lowres_vcb
vcbavg = np.mean(vcbslice)
dvcbslice = vcbslice

print(vcbavg)

csd=ax[1,0].contourf(xx, yy, ddeltaslice[indexv])
fig.colorbar(csd, ax=ax[1,0], shrink=0.9, location='left')
csv=ax[1,1].contourf(xx, yy, dvcbslice[indexv])
fig.colorbar(csv, ax=ax[1,1], shrink=0.9, extend=extend)
plt.show()

plt.tight_layout()

[]:

[]:

[]:

[]:

[]:

6.3. Tutorials and FAQs 63

21cmFAST

[]:

[]:

[]:

[]: global_quantities = ('brightness_temp','Ts_box','xH_box',"dNrec_box",'z_re_box','Gamma12_
→˓box','J_21_LW_box',"density")
#choose some to plot...
plot_quantities = ('brightness_temp','Ts_box','xH_box',"dNrec_box",'Gamma12_box','J_21_
→˓LW_box')
ymins = [-120, 1e1, 0, 0, 0, 0]
ymaxs = [30, 1e3, 1, 1, 1,5]
linestyles = ['-', '-',':','-.','-.',':']
colors = ['gray','black','#e41a1c','#377eb8','#e41a1c','#377eb8']
lws = [2,2,2,2]

textss = ['vcb','MCGs']
factorss = [[0, 1],] * len(textss)
labelss = [['NO', 'reference'],] * len(textss)

fig, axss = plt.subplots(len(plot_quantities), len(labelss),
sharex=True, figsize=(4*len(labelss),2*len(plot_quantities)))

for pp, texts in enumerate(textss):
labels = labelss[pp]
factors = factorss[pp]
axs = axss[:,pp]
for kk, label in enumerate(labels):

factor = factors[kk]

if kk==0:
if pp == 0:

lightcone = lightcone_fid_NOMINI
else:

lightcone = lightcone_fid_novcb
else:

lightcone = lightcone_fid_vcb

freqs = 1420.4 / (np.array(lightcone.node_redshifts) + 1.)
for jj, global_quantity in enumerate(plot_quantities):

axs[jj].plot(freqs, getattr(lightcone, 'global_%s'%global_quantity.replace('_
→˓box','')),

color=colors[kk],linestyle=linestyles[kk], label = labels[kk],
→˓lw=lws[kk])

axs[0].text(0.01, 0.99, texts,horizontalalignment='right',verticalalignment='bottom',
transform=axs[0].transAxes,fontsize = 15)

for jj, global_quantity in enumerate(plot_quantities):
axs[jj].set_ylim(ymins[jj], ymaxs[jj])

(continues on next page)

64 Chapter 6. Contents

21cmFAST

(continued from previous page)

axs[-1].set_xlabel('Frequency/MHz',fontsize=15)
axs[-1].xaxis.set_tick_params(labelsize=15)

axs[0].set_xlim(1420.4 / (35 + 1.), 1420.4 / (5.5 + 1.))
zlabels = np.array([6, 7, 8, 10, 13, 18, 25, 35])
ax2 = axs[0].twiny()
ax2.set_xlim(axs[0].get_xlim())
ax2.set_xticks(1420.4 / (zlabels + 1.))
ax2.set_xticklabels(zlabels.astype(np.str))
ax2.set_xlabel("redshift",fontsize=15)
ax2.xaxis.set_tick_params(labelsize=15)
ax2.grid(False)

if pp == 0:
axs[0].legend(loc='lower right', ncol=2,fontsize=13,fancybox=True,frameon=True)
for jj, global_quantity in enumerate(plot_quantities):

axs[jj].set_ylabel('global_%s'%global_quantity.replace('_box',''),
→˓fontsize=15)

axs[jj].yaxis.set_tick_params(labelsize=15)
else:

for jj, global_quantity in enumerate(plot_quantities):
axs[jj].set_ylabel('global_%s'%global_quantity.replace('_box',''),fontsize=0)
axs[jj].yaxis.set_tick_params(labelsize=0)

plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

varying parameters

let’s vary the parameters that describe mini-halos and see the impact to the global signal. Warning: It may take a while
to run all these boxes!

We keep other parameters fixed and vary one of following by a factor of 1/3 and 3:

F_STAR7_MINI
F_ESC7_MINI
L_X_MINI
A_LW

We also have a NOmini model where mini-halos are not included

[]: #defining those color, linstyle, blabla
linestyles = ['-', '-',':','-.','-.',':']
colors = ['gray','black','#e41a1c','#377eb8','#e41a1c','#377eb8']
lws = [1,3,2,2,2,2]

textss = ['varying '+r'$f_{*,7}^{\rm mol}$',\
'varying '+r'$f_{\rm esc}^{\rm mol}$',\
'varying '+r'$L_{\rm x}^{\rm mol}$',\
'varying '+r'$A_{\rm LW}$']

factorss = [[0, 1, 0.33, 3.0],] * len(textss)
labelss = [['No Velocity', 'Fiducial', '/3', 'x3'],] * len(textss)

6.3. Tutorials and FAQs 65

21cmFAST

[]: global_quantities = ('brightness_temp','Ts_box','xH_box',"dNrec_box",'z_re_box','Gamma12_
→˓box','J_21_LW_box',"density")
#choose some to plot...
plot_quantities = ('brightness_temp','Ts_box','xH_box',"dNrec_box",'Gamma12_box','J_21_
→˓LW_box')
ymins = [-120, 1e1, 0, 0, 0, 0]
ymaxs = [30, 1e3, 1, 1, 1,10]

fig, axss = plt.subplots(len(plot_quantities), len(labelss),
sharex=True, figsize=(4*len(labelss),2*len(global_quantities)))

for pp, texts in enumerate(textss):
labels = labelss[pp]
factors = factorss[pp]
axs = axss[:,pp]
for kk, label in enumerate(labels):

flag_options = flag_options_fid.copy()
astro_params = astro_params_vcb.copy()
factor = factors[kk]
if label == 'No Velocity':

lightcone = lightcone_fid_novcb
elif label == 'Fiducial':

lightcone = lightcone_fid_vcb
else:

if pp == 0:
astro_params.update({'F_STAR7_MINI': astro_params_vcb['F_STAR7_MINI']+np.

→˓log10(factor)})
elif pp == 1:

astro_params.update({'F_ESC7_MINI': astro_params_vcb['F_ESC7_MINI']+np.
→˓log10(factor)})

elif pp == 2:
astro_params.update({'L_X_MINI': astro_params_vcb['L_X_MINI']+np.

→˓log10(factor)})
elif pp == 3:

astro_params.update({'A_LW': astro_params_vcb['A_LW']*factor})
else:

print('Make a choice!')

lightcone = p21c.run_lightcone(
redshift = ZMIN,
init_box = initial_conditions,
flag_options = flag_options_fid,
astro_params = astro_params,
global_quantities=global_quantities,
random_seed = random_seed,
direc = output_dir

)

freqs = 1420.4 / (np.array(lightcone.node_redshifts) + 1.)
for jj, global_quantity in enumerate(plot_quantities):

axs[jj].plot(freqs, getattr(lightcone, 'global_%s'%global_quantity.replace('_
→˓box','')), (continues on next page)

66 Chapter 6. Contents

21cmFAST

(continued from previous page)

color=colors[kk],linestyle=linestyles[kk], label = labels[kk],
→˓lw=lws[kk])

axs[0].text(0.01, 0.99, texts,horizontalalignment='left',verticalalignment='top',
transform=axs[0].transAxes,fontsize = 15)

for jj, global_quantity in enumerate(plot_quantities):
axs[jj].set_ylim(ymins[jj], ymaxs[jj])

axs[-1].set_xlabel('Frequency/MHz',fontsize=15)
axs[-1].xaxis.set_tick_params(labelsize=15)

axs[0].set_xlim(1420.4 / (35 + 1.), 1420.4 / (5.5 + 1.))
zlabels = np.array([6, 7, 8, 10, 13, 18, 25, 35])
ax2 = axs[0].twiny()
ax2.set_xlim(axs[0].get_xlim())
ax2.set_xticks(1420.4 / (zlabels + 1.))
ax2.set_xticklabels(zlabels.astype(np.str))
ax2.set_xlabel("redshift",fontsize=15)
ax2.xaxis.set_tick_params(labelsize=15)
ax2.grid(False)

if pp == 0:
axs[0].legend(loc='lower right', ncol=2,fontsize=13,fancybox=True,frameon=True)
for jj, global_quantity in enumerate(plot_quantities):

axs[jj].set_ylabel('global_%s'%global_quantity.replace('_box',''),
→˓fontsize=15)

axs[jj].yaxis.set_tick_params(labelsize=15)
else:

for jj, global_quantity in enumerate(plot_quantities):
axs[jj].set_ylabel('global_%s'%global_quantity.replace('_box',''),fontsize=0)
axs[jj].yaxis.set_tick_params(labelsize=0)

plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

[]:

[]: # define functions to calculate PS, following py21cmmc
from powerbox.tools import get_power

def compute_power(
box,
length,
n_psbins,
log_bins=True,
ignore_kperp_zero=True,
ignore_kpar_zero=False,
ignore_k_zero=False,

):
Determine the weighting function required from ignoring k's.
k_weights = np.ones(box.shape, dtype=np.int)
n0 = k_weights.shape[0]

(continues on next page)

6.3. Tutorials and FAQs 67

21cmFAST

(continued from previous page)

n1 = k_weights.shape[-1]

if ignore_kperp_zero:
k_weights[n0 // 2, n0 // 2, :] = 0

if ignore_kpar_zero:
k_weights[:, :, n1 // 2] = 0

if ignore_k_zero:
k_weights[n0 // 2, n0 // 2, n1 // 2] = 0

res = get_power(
box,
boxlength=length,
bins=n_psbins,
bin_ave=False,
get_variance=False,
log_bins=log_bins,
k_weights=k_weights,

)

res = list(res)
k = res[1]
if log_bins:

k = np.exp((np.log(k[1:]) + np.log(k[:-1])) / 2)
else:

k = (k[1:] + k[:-1]) / 2

res[1] = k
return res

def powerspectra(brightness_temp, n_psbins=50, nchunks=10, min_k=0.1, max_k=1.0,␣
→˓logk=True):

data = []
chunk_indices = list(range(0,brightness_temp.n_slices,round(brightness_temp.n_slices␣

→˓/ nchunks),))

if len(chunk_indices) > nchunks:
chunk_indices = chunk_indices[:-1]

chunk_indices.append(brightness_temp.n_slices)

for i in range(nchunks):
start = chunk_indices[i]
end = chunk_indices[i + 1]
chunklen = (end - start) * brightness_temp.cell_size

power, k = compute_power(
brightness_temp.brightness_temp[:, :, start:end],
(BOX_LEN, BOX_LEN, chunklen),
n_psbins,
log_bins=logk,

)
data.append({"k": k, "delta": power * k ** 3 / (2 * np.pi ** 2)})

return data

68 Chapter 6. Contents

21cmFAST

[]: # do 5 chunks but only plot 1 - 4, the 0th has no power for minihalo models where xH=0
nchunks = 4
k_fundamental = 2*np.pi/BOX_LEN
k_max = k_fundamental * HII_DIM
Nk=np.floor(HII_DIM/1).astype(int)

fig, axss = plt.subplots(nchunks, len(labelss), sharex=True,sharey=True,
→˓figsize=(4*len(labelss),3*(nchunks)),subplot_kw={"xscale":'log', "yscale":'log'})

for pp, texts in enumerate(textss):
labels = labelss[pp]
factors = factorss[pp]
axs = axss[:,pp]
for kk, label in enumerate(labels):

flag_options = flag_options_fid.copy()
astro_params = astro_params_vcb.copy()
factor = factors[kk]
if label == 'No Velocity':

lightcone = lightcone_fid_novcb
elif label == 'Fiducial':

lightcone = lightcone_fid_vcb
else:

if pp == 0:
astro_params.update({'F_STAR7_MINI': astro_params_vcb['F_STAR7_MINI']+np.

→˓log10(factor)})
elif pp == 1:

astro_params.update({'F_ESC7_MINI': astro_params_vcb['F_ESC7_MINI']+np.
→˓log10(factor)})

elif pp == 2:
astro_params.update({'L_X_MINI': astro_params_vcb['L_X_MINI']+np.

→˓log10(factor)})
elif pp == 3:

astro_params.update({'A_LW': astro_params_vcb['A_LW']+np.log10(factor)})
else:

print('Make a choice!')

lightcone = p21c.run_lightcone(
redshift = ZMIN,
init_box = initial_conditions,
flag_options = flag_options_fid,
astro_params = astro_params,
global_quantities=global_quantities,
random_seed = random_seed,
direc = output_dir

)

PS = powerspectra(lightcone, min_k = k_fundamental, max_k = k_max)

for ii in range(nchunks):
axs[ii].plot(PS[ii+1]['k'], PS[ii+1]['delta'], color=colors[kk],

→˓linestyle=linestyles[kk], label = labels[kk],lw=lws[kk])

if pp == len(textss)-1 and kk == 0:
(continues on next page)

6.3. Tutorials and FAQs 69

21cmFAST

(continued from previous page)

axs[ii].text(0.99, 0.01, 'Chunk-%02d'%(ii+1),horizontalalignment='right',
→˓verticalalignment='bottom',

transform=axs[ii].transAxes,fontsize = 15)

axs[0].text(0.01, 0.99, texts,horizontalalignment='left',verticalalignment='top',
transform=axs[0].transAxes,fontsize = 15)

axs[-1].set_xlabel("k [Mpc$^{-3}$]",fontsize=15)
axs[-1].xaxis.set_tick_params(labelsize=15)

if pp == 0:
for ii in range(nchunks):

axs[ii].set_ylim(2e-1, 2e2)
axs[ii].set_ylabel("$k^3 P$", fontsize=15)
axs[ii].yaxis.set_tick_params(labelsize=15)

else:
for ii in range(nchunks-1):

axs[ii].set_ylim(2e-1, 2e2)
axs[ii].set_ylabel("$k^3 P$", fontsize=0)
axs[ii].yaxis.set_tick_params(labelsize=0)

axss[0,0].legend(loc='lower left', ncol=2,fontsize=13,fancybox=True,frameon=True)
plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

Note that I’ve run these simulations in parallel before this tutorial. With these setup, each took ~6h to finish. Here,
running means read the cached outputs.

global properties – optical depth

[]: #defining those color, linstyle, blabla
linestyles = ['-', '-',':','-.','-.',':']
colors = ['gray','black','#e41a1c','#377eb8','#e41a1c','#377eb8']
lws = [1,3,2,2,2,2]

textss_tau = ['varying '+r'$f_{*,7}^{\rm mol}$',\
'varying '+r'$f_{\rm esc}^{\rm mol}$',\
'varying '+r'$A_{\rm LW}$']

factorss_tau = [[0, 1, 0.33, 3.0],] * len(textss_tau)
labelss_tau = [['No Velocity', 'Fiducial', '/3', 'x3'],] * len(textss_tau)

[]: plot_quantities = ['tau_e']
ymins = [0]
ymaxs = [0.2]

fig, axss_tau = plt.subplots(len(plot_quantities), len(labelss_tau),
sharex=True, figsize=(4*len(labelss_tau),3*len(plot_

→˓quantities)))

(continues on next page)

70 Chapter 6. Contents

21cmFAST

(continued from previous page)

for pp, texts in enumerate(textss_tau):
labels = labelss_tau[pp]
factors = factorss_tau[pp]
axs = axss_tau[pp]
for kk, label in enumerate(labels):

flag_options = flag_options_fid.copy()
astro_params = astro_params_vcb.copy()
factor = factors[kk]
if label == 'No Velocity':

lightcone = lightcone_fid_novcb
elif label == 'Fiducial':

lightcone = lightcone_fid_vcb
else:

if pp == 0:
astro_params.update({'F_STAR7_MINI': astro_params_vcb['F_STAR7_MINI']+np.

→˓log10(factor)})
elif pp == 1:

astro_params.update({'F_ESC7_MINI': astro_params_vcb['F_ESC7_MINI']+np.
→˓log10(factor)})

elif pp == 2:
astro_params.update({'A_LW': astro_params_vcb['A_LW']*factor})

else:
print('Make a choice!')

lightcone = p21c.run_lightcone(
redshift = ZMIN,
init_box = initial_conditions,
flag_options = flag_options_fid,
astro_params = astro_params,
global_quantities=global_quantities,
random_seed = random_seed,
direc = output_dir

)

z_e=np.array([]);
tau_e=np.array([]);
for i in range(len(lightcone.node_redshifts)-1):

tauz=p21c.compute_tau(redshifts=lightcone.node_redshifts[-1:-2-i:-1],
global_xHI=lightcone.global_xHI[-1:-2-i:-1])

tau_e=np.append(tau_e,tauz)
z_e=np.append(z_e,lightcone.node_redshifts[-2-i])
#print(i,lightcone.node_redshifts[i],tauz)

#add lower zs where we manually set xH=1
zlow=np.linspace(lightcone.node_redshifts[-1]-0.1, 0.1, 14)
for zl in zlow:

tauz=p21c.compute_tau(redshifts=np.array([zl]), global_xHI=np.
→˓array([lightcone.global_xHI[-1]]))

tau_e=np.append([tauz],tau_e)
(continues on next page)

6.3. Tutorials and FAQs 71

21cmFAST

(continued from previous page)

z_e=np.append([zl],z_e)

freqs = 1420.4 / (np.array(lightcone.node_redshifts) + 1.)
for jj, global_quantity in enumerate(plot_quantities):

axs.plot(z_e, tau_e,
color=colors[kk],linestyle=linestyles[kk], label = labels[kk],

→˓lw=lws[kk])

axs.text(0.01, 0.99, texts,horizontalalignment='left',verticalalignment='top',
transform=axs.transAxes,fontsize = 15)

axs.set_ylim(ymins[0], ymaxs[0])
axs.set_xlabel('redshift',fontsize=15)
axs.xaxis.set_tick_params(labelsize=15)

axs.set_xlim(0.,20.)

if pp == 0:
for ii in range(nchunks):

axs.set_ylabel('$\\tau$',fontsize=15)
axs.yaxis.set_tick_params(labelsize=15)

else:
for ii in range(nchunks-1):

axs.yaxis.set_tick_params(labelsize=0)

plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

[]:

[]:

21-cm power spectra

[]: # do 5 chunks but only plot 1 - 4, the 0th has no power for minihalo models where xH=0
nchunks = 4

fig, axss = plt.subplots(nchunks, len(labelss), sharex=True,sharey=True,
→˓figsize=(4*len(labelss),3*(nchunks)),subplot_kw={"xscale":'log', "yscale":'log'})

for pp, texts in enumerate(textss):
labels = labelss[pp]
factors = factorss[pp]
axs = axss[:,pp]
for kk, label in enumerate(labels):

factor = factors[kk]

(continues on next page)

72 Chapter 6. Contents

21cmFAST

(continued from previous page)

if kk==0:
lightcone = lightcone_fid_vcbavg

else:
lightcone = lightcone_fid_vcb

PS = powerspectra(lightcone, min_k = k_fundamental, max_k = k_max)
for ii in range(nchunks):

axs[ii].plot(PS[ii+1]['k'], PS[ii+1]['delta'], color=colors[kk],
→˓linestyle=linestyles[kk], label = labels[kk],lw=lws[kk])

if pp == len(textss)-1 and kk == 0:
axs[ii].text(0.99, 0.01, 'Chunk-%02d'%(ii+1),horizontalalignment='right',

→˓verticalalignment='bottom',
transform=axs[ii].transAxes,fontsize = 15)

axs[0].text(0.01, 0.99, texts,horizontalalignment='left',verticalalignment='top',
transform=axs[0].transAxes,fontsize = 15)

axs[-1].set_xlabel("k [Mpc$^{-3}$]",fontsize=15)
axs[-1].xaxis.set_tick_params(labelsize=15)

if pp == 0:
for ii in range(nchunks):

axs[ii].set_ylim(2e-1, 2e2)
axs[ii].set_ylabel("$k^3 P$", fontsize=15)
axs[ii].yaxis.set_tick_params(labelsize=15)

else:
for ii in range(nchunks-1):

axs[ii].set_ylim(2e-1, 2e2)
axs[ii].set_ylabel("$k^3 P$", fontsize=0)
axs[ii].yaxis.set_tick_params(labelsize=0)

axss[0,0].legend(loc='lower left', ncol=2,fontsize=13,fancybox=True,frameon=True)
plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

[]: nchunks=5

textss = ['vcb','vcb']
factorss = [[0, 1],] * len(textss)
labelss = [['Regular', 'Avg'],] * len(textss)

k_fundamental = 2*np.pi/BOX_LEN
k_max = k_fundamental * HII_DIM
Nk=np.floor(HII_DIM/1).astype(int)

PSv= powerspectra(lightcone_fid_vcb, min_k = k_fundamental, max_k = k_max)
PSvavg= powerspectra(lightcone_fid_vcbavg, min_k = k_fundamental, max_k = k_max)

[]: klist= PSv[0]['k']
P21diff = [(PSv[i]['delta']-PSvavg[i]['delta'])/PSvavg[i]['delta'] for i in␣
→˓range(nchunks)]

(continues on next page)

6.3. Tutorials and FAQs 73

21cmFAST

(continued from previous page)

import matplotlib.pyplot as plt

fig, axss = plt.subplots(nchunks, 1, sharex=True,sharey=True,figsize=(2*len(labelss),
→˓3*(nchunks)),subplot_kw={"xscale":'linear', "yscale":'linear'})

for ii in range(nchunks):
axss[ii].plot(klist, P21diff[ii])

plt.xscale('log')
axss[0].legend(loc='lower left', ncol=2,fontsize=13,fancybox=True,frameon=True)
plt.tight_layout()
fig.subplots_adjust(hspace = 0.0,wspace=0.0)

[]:

If you’ve covered the tutorials and still have questions about “how to do stuff” in 21cmFAST, consult the FAQs:

6.3.6 Installation FAQ

Errors with “recompile with -fPIC” for FFTW

Make sure you have installed FFTW with --enable-shared. On Ubuntu, you will also need to have libfftw3-dev
installed.

6.3.7 Miscellaneous FAQs

My run seg-faulted, what should I do?

Since 21cmFAST is written in C, there is the off-chance that something catastrophic will happen, causing a segfault. Typ-
ically, if this happens, Python will not print a traceback where the error occurred, and finding the source of such errors
can be difficult. However, one has the option of using the standard library faulthandler. Specifying -X faulthandler
when invoking Python will cause a minimal traceback to be printed to stderr if a segfault occurs.

Configuring 21cmFAST

21cmFAST has a configuration file located at ~/.21cmfast/config.yml. This file specifies some options to use in
a rather global sense, especially to do with I/O. You can directly edit this file to change how 21cmFAST behaves for
you across sessions. For any particular function call, any of the options may be overwritten by supplying arguments
to the function itself. To set the configuration for a particular session, you can also set the global config instance, for
example:

>>> import py21cmfast as p21
>>> p21.config['regenerate'] = True
>>> p21.run_lightcone(...)

All functions that use the regenerate keyword will now use the value you’ve set in the config. Sometimes, you may
want to be a little more careful – perhaps you want to change the configuration for a set of calls, but have it change back
to the defaults after that. We provide a context manager to do this:

74 Chapter 6. Contents

https://docs.python.org/3/library/faulthandler.html

21cmFAST

>>> with p21.config.use(regenerate=True):
>>> p21.run_lightcone()
>>> print(p21.config['regenerate']) # prints "True"
>>> print(p21.config['regenerate']) # prints "False"

To make the current configuration permanent, simply use the write method:

>>> p21.config['direc'] = 'my_own_cache'
>>> p21.config.write()

Global Parameters

There are a bunch of “global” parameters that are used throughout the C code. These are parameters that are deemed
to be constant enough to not expose them through the regularly-used input structs, but nevertheless may necessitate
modification from time-to-time. These are accessed through the global_params object:

>>> from py21cmfast import global_params

Help on the attributes can be obtained via help(global_params) or in the docs. Setting the attributes (which affects
them everywhere throughout the code) is as simple as, eg:

>>> global_params.Z_HEAT_MAX = 30.0

If you wish to use a certain parameter for a fixed portion of your code (eg. for a single run), it is encouraged to use the
context manager, eg.:

>>> with global_params.use(Z_HEAT_MAX=10):
>>> run_lightcone(...)

How can I read a Coeval object from disk?

The simplest way to read a py21cmfast.outputs.Coeval object that has been written to disk is by doing:

import py21cmfast as p21c
coeval = p21c.Coeval.read("my_coeval.h5")

However, you may want to read parts of the data, or read the data using a different language or environment. You can
do this as long as you have the HDF5 library (i.e. h5py for Python). HDF5 is self-documenting, so you should be able
to determine the structure of the file yourself interactively. But here is an example using h5py:

import h5py

fl = h5py.File("my_coeval.h5", "r")

print a dict of all the UserParams
the CosmoParams, FlagOptions and AstroParams are accessed the same way.
print(dict(fl['user_params'].attrs))

print a dict of all globals used for the coeval
print(dict(fl['_globals'].attrs))

(continues on next page)

6.3. Tutorials and FAQs 75

../reference/_autosummary/py21cmfast.inputs.html

21cmFAST

(continued from previous page)

Get the redshift and random seed of the coeval box
redshift = fl.attrs['redshift']
seed = fl.attrs['random_seed']

Get the Initial Conditions:
print(np.max(fl['InitialConditions']['hires_density'][:]))

Or brightness temperature
print(np.max(fl['BrightnessTemp']['brightness_temperature'][:]))

Basically, the different stages of computation are groups in the file, and all
their consituent boxes are datasets in that group.
Print out the keys of the group to see what is available:
print(fl['TsBox'].keys())

How can I read a LightCone object from file?

Just like the py21cmfast.outputs.Coeval object documented above, the py21cmfast.outputs.LightCone ob-
ject is most easily read via its .read() method. Similarly, it is written using HDF5. Again, the input parameters
are stored in their own sub-objects. However, the lightcone boxes themselves are in the “lightcones” group, while the
globally averaged quantities are in the global_quantities group:

import h5py
import matplotlib.pyplot as plt

fl = h5py.File("my_lightcone.h5", "r")

Tb = fl['lightcones']['brightness_temp'][:]
assert Tb.ndim==3

global_Tb = fl['global_quantities']['brightness_temp'][:]
redshifts = fl['node_redshifts']

plt.plot(redshifts, global_Tb)

6.4 API Reference

6.4.1 py21cmfast

py21cmfast.inputs Input parameter classes.
py21cmfast.outputs Output class objects.
py21cmfast.wrapper The main wrapper for the underlying 21cmFAST C-

code.
py21cmfast.plotting Simple plotting functions for 21cmFAST objects.
py21cmfast.cache_tools A set of tools for reading/writing/querying the in-built

cache.

76 Chapter 6. Contents

21cmFAST

py21cmfast.inputs

Input parameter classes.

There are four input parameter/option classes, not all of which are required for any given function. They are
UserParams, CosmoParams, AstroParams and FlagOptions. Each of them defines a number of variables, and
all of these have default values, to minimize the burden on the user. These defaults are accessed via the _defaults_
class attribute of each class. The available parameters for each are listed in the documentation for each class below.

Along with these, the module exposes global_params, a singleton object of type GlobalParams, which is a simple
class providing read/write access to a number of parameters used throughout the computation which are very rarely
varied.

Functions

validate_all_inputs(user_params, cosmo_params) Cross-validate input parameters from different structs.

py21cmfast.inputs.validate_all_inputs

py21cmfast.inputs.validate_all_inputs(user_params: UserParams, cosmo_params: CosmoParams,
astro_params: Optional[AstroParams] = None, flag_options:
Optional[FlagOptions] = None)

Cross-validate input parameters from different structs.

The input params may be modified in-place in this function, but if so, a warning should be emitted.

Classes

AstroParams(*args[, INHOMO_RECO]) Astrophysical parameters.
CosmoParams(*args, **kwargs) Cosmological parameters (with defaults) which trans-

lates to a C struct.
FlagOptions(*args, **kwargs) Flag-style options for the ionization routines.
GlobalParams(wrapped, ffi) Global parameters for 21cmFAST.
UserParams(*args, **kwargs) Structure containing user parameters (with defaults).

py21cmfast.inputs.AstroParams

class py21cmfast.inputs.AstroParams(*args, INHOMO_RECO=False, **kwargs)
Astrophysical parameters.

To see default values for each parameter, use AstroParams._defaults_. All parameters passed in the construc-
tor are also saved as instance attributes which should be considered read-only. This is true of all input-parameter
classes.

Parameters
• INHOMO_RECO (bool, optional) – Whether inhomogeneous recombinations are being

calculated. This is not a part of the astro parameters structure, but is required by this class
to set some default behaviour.

6.4. API Reference 77

21cmFAST

• HII_EFF_FACTOR (float, optional) – The ionizing efficiency of high-z galaxies (zeta, from
Eq. 2 of Greig+2015). Higher values tend to speed up reionization.

• F_STAR10 (float, optional) – The fraction of galactic gas in stars for 10^10
solar mass haloes. Only used in the “new” parameterization, i.e. when
USE_MASS_DEPENDENT_ZETA is set to True (in FlagOptions). If so, this is
used along with F_ESC10 to determine HII_EFF_FACTOR (which is then unused). See
Eq. 11 of Greig+2018 and Sec 2.1 of Park+2018. Given in log10 units.

• F_STAR7_MINI (float, optional) – The fraction of galactic gas in stars for 10^7 solar mass
minihaloes. Only used in the “minihalo” parameterization, i.e. when USE_MINI_HALOS
is set to True (in FlagOptions). If so, this is used along with F_ESC7_MINI to determine
HII_EFF_FACTOR_MINI (which is then unused). See Eq. 8 of Qin+2020. Given in log10
units.

• ALPHA_STAR (float, optional) – Power-law index of fraction of galactic gas in stars as a
function of halo mass. See Sec 2.1 of Park+2018.

• ALPHA_STAR_MINI (float, optional) – Power-law index of fraction of galactic gas in stars
as a function of halo mass, for MCGs. See Sec 2 of Muñoz+21 (2110.13919).

• F_ESC10 (float, optional) – The “escape fraction”, i.e. the fraction of ionizing photons es-
caping into the IGM, for 10^10 solar mass haloes. Only used in the “new” parameterization,
i.e. when USE_MASS_DEPENDENT_ZETA is set to True (in FlagOptions). If so, this is
used along with F_STAR10 to determine HII_EFF_FACTOR (which is then unused). See
Eq. 11 of Greig+2018 and Sec 2.1 of Park+2018.

• F_ESC7_MINI (float, optional) – The “escape fraction for minihalos”, i.e. the frac-
tion of ionizing photons escaping into the IGM, for 10^7 solar mass minihaloes. Only
used in the “minihalo” parameterization, i.e. when USE_MINI_HALOS is set to
True (in FlagOptions). If so, this is used along with F_ESC7_MINI to determine
HII_EFF_FACTOR_MINI (which is then unused). See Eq. 17 of Qin+2020. Given in log10
units.

• ALPHA_ESC (float, optional) – Power-law index of escape fraction as a function of halo
mass. See Sec 2.1 of Park+2018.

• M_TURN (float, optional) – Turnover mass (in log10 solar mass units) for quenching of star
formation in halos, due to SNe or photo-heating feedback, or inefficient gas accretion. Only
used if USE_MASS_DEPENDENT_ZETA is set to True in FlagOptions. See Sec 2.1 of
Park+2018.

• R_BUBBLE_MAX (float, optional) – Mean free path in Mpc of ionizing photons within
ionizing regions (Sec. 2.1.2 of Greig+2015). Default is 50 if INHOMO_RECO is True, or
15.0 if not.

• ION_Tvir_MIN (float, optional) – Minimum virial temperature of star-forming haloes (Sec
2.1.3 of Greig+2015). Given in log10 units.

• L_X (float, optional) – The specific X-ray luminosity per unit star formation escaping host
galaxies. Cf. Eq. 6 of Greig+2018. Given in log10 units.

• L_X_MINI (float, optional) – The specific X-ray luminosity per unit star formation escaping
host galaxies for minihalos. Cf. Eq. 23 of Qin+2020. Given in log10 units.

• NU_X_THRESH (float, optional) – X-ray energy threshold for self-absorption by host
galaxies (in eV). Also called E_0 (cf. Sec 4.1 of Greig+2018). Typical range is (100, 1500).

• X_RAY_SPEC_INDEX (float, optional) – X-ray spectral energy index (cf. Sec 4.1 of
Greig+2018). Typical range is (-1, 3).

78 Chapter 6. Contents

21cmFAST

• X_RAY_Tvir_MIN (float, optional) – Minimum halo virial temperature in which X-rays
are produced. Given in log10 units. Default is ION_Tvir_MIN.

• F_H2_SHIELD (float, optional) – Self-shielding factor of molecular hydrogen when expe-
riencing LW suppression. Cf. Eq. 12 of Qin+2020. Consistently included in A_LW fit from
sims. If used we recommend going back to Macachek+01 A_LW=22.86.

• t_STAR (float, optional) – Fractional characteristic time-scale (fraction of hubble time)
defining the star-formation rate of galaxies. Only used if USE_MASS_DEPENDENT_ZETA
is set to True in FlagOptions. See Sec 2.1, Eq. 3 of Park+2018.

• N_RSD_STEPS (int, optional) – Number of steps used in redshift-space-distortion algo-
rithm. NOT A PHYSICAL PARAMETER.

• A_LW, BETA_LW (float, optional) – Impact of the LW feedback on Mturn for minihaloes.
Default is 22.8685 and 0.47 following Machacek+01, respectively. Latest simulations sug-
gest 2.0 and 0.6. See Sec 2 of Muñoz+21 (2110.13919).

• A_VCB, BETA_VCB (float, optional) – Impact of the DM-baryon relative velocities on
Mturn for minihaloes. Default is 1.0 and 1.8, and agrees between different sims. See Sec 2
of Muñoz+21 (2110.13919).

Methods

__init__(*args[, INHOMO_RECO])

clone(**kwargs) Make a fresh copy of the instance with arbitrary pa-
rameters updated.

convert(key, val) Convert a given attribute before saving it the instance.
get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
update(**kwargs) Update the parameters of an existing class structure.

py21cmfast.inputs.AstroParams.__init__

AstroParams.__init__(*args, INHOMO_RECO=False, **kwargs)

py21cmfast.inputs.AstroParams.clone

AstroParams.clone(**kwargs)
Make a fresh copy of the instance with arbitrary parameters updated.

6.4. API Reference 79

21cmFAST

py21cmfast.inputs.AstroParams.convert

AstroParams.convert(key, val)
Convert a given attribute before saving it the instance.

py21cmfast.inputs.AstroParams.get_fieldnames

classmethod AstroParams.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.inputs.AstroParams.get_fields

classmethod AstroParams.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.inputs.AstroParams.get_pointer_fields

classmethod AstroParams.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.inputs.AstroParams.refresh_cstruct

AstroParams.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

py21cmfast.inputs.AstroParams.update

AstroParams.update(**kwargs)
Update the parameters of an existing class structure.

This should always be used instead of attempting to assign values to instance attributes. It consistently
re-generates the underlying C memory space and sets some book-keeping variables.

Parameters
kwargs – Any argument that may be passed to the class constructor.

80 Chapter 6. Contents

21cmFAST

Attributes

NU_X_THRESH Check if the choice of NU_X_THRESH is sensible.
R_BUBBLE_MAX Maximum radius of bubbles to be searched.
X_RAY_Tvir_MIN Minimum virial temperature of X-ray emitting

sources (unlogged and set dynamically).
defining_dict Pure python dictionary representation of this class, as

it would appear in C.
fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
pystruct A pure-python dictionary representation of the corre-

sponding C structure.
self Dictionary which if passed to its own constructor will

yield an identical copy.
t_STAR Check if the choice of NU_X_THRESH is sensible.

py21cmfast.inputs.AstroParams.NU_X_THRESH

property AstroParams.NU_X_THRESH

Check if the choice of NU_X_THRESH is sensible.

py21cmfast.inputs.AstroParams.R_BUBBLE_MAX

property AstroParams.R_BUBBLE_MAX

Maximum radius of bubbles to be searched. Set dynamically.

py21cmfast.inputs.AstroParams.X_RAY_Tvir_MIN

property AstroParams.X_RAY_Tvir_MIN

Minimum virial temperature of X-ray emitting sources (unlogged and set dynamically).

py21cmfast.inputs.AstroParams.defining_dict

property AstroParams.defining_dict

Pure python dictionary representation of this class, as it would appear in C.

Note: This is not the same as pystruct, as it omits all variables that don’t need to be passed to the
constructor, but appear in the C struct (some can be calculated dynamically based on the inputs). It is also
not the same as self , as it includes the ‘converted’ values for each variable, which are those actually passed
to the C code.

6.4. API Reference 81

21cmFAST

py21cmfast.inputs.AstroParams.fieldnames

property AstroParams.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.inputs.AstroParams.fields

property AstroParams.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.inputs.AstroParams.pointer_fields

property AstroParams.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.inputs.AstroParams.primitive_fields

property AstroParams.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.inputs.AstroParams.pystruct

property AstroParams.pystruct

A pure-python dictionary representation of the corresponding C structure.

py21cmfast.inputs.AstroParams.self

property AstroParams.self

Dictionary which if passed to its own constructor will yield an identical copy.

Note: This differs from pystruct and defining_dict in that it uses the hidden variable value, if it
exists, instead of the exposed one. This prevents from, for example, passing a value which is 10**10**val
(and recurring!).

py21cmfast.inputs.AstroParams.t_STAR

property AstroParams.t_STAR

Check if the choice of NU_X_THRESH is sensible.

82 Chapter 6. Contents

21cmFAST

py21cmfast.inputs.CosmoParams

class py21cmfast.inputs.CosmoParams(*args, **kwargs)
Cosmological parameters (with defaults) which translates to a C struct.

To see default values for each parameter, use CosmoParams._defaults_. All parameters passed in the construc-
tor are also saved as instance attributes which should be considered read-only. This is true of all input-parameter
classes.

Default parameters are based on Plank18, https://arxiv.org/pdf/1807.06209.pdf, Table 2, last column.
[TT,TE,EE+lowE+lensing+BAO]

Parameters
• SIGMA_8 (float, optional) – RMS mass variance (power spectrum normalisation).

• hlittle (float, optional) – The hubble parameter, H_0/100.

• OMm (float, optional) – Omega matter.

• OMb (float, optional) – Omega baryon, the baryon component.

• POWER_INDEX (float, optional) – Spectral index of the power spectrum.

Methods

__init__(*args, **kwargs)

clone(**kwargs) Make a fresh copy of the instance with arbitrary pa-
rameters updated.

convert(key, val) Make any conversions of values before saving to the
instance.

get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
update(**kwargs) Update the parameters of an existing class structure.

py21cmfast.inputs.CosmoParams.__init__

CosmoParams.__init__(*args, **kwargs)

6.4. API Reference 83

https://arxiv.org/pdf/1807.06209.pdf

21cmFAST

py21cmfast.inputs.CosmoParams.clone

CosmoParams.clone(**kwargs)
Make a fresh copy of the instance with arbitrary parameters updated.

py21cmfast.inputs.CosmoParams.convert

CosmoParams.convert(key, val)
Make any conversions of values before saving to the instance.

py21cmfast.inputs.CosmoParams.get_fieldnames

classmethod CosmoParams.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.inputs.CosmoParams.get_fields

classmethod CosmoParams.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.inputs.CosmoParams.get_pointer_fields

classmethod CosmoParams.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.inputs.CosmoParams.refresh_cstruct

CosmoParams.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

py21cmfast.inputs.CosmoParams.update

CosmoParams.update(**kwargs)
Update the parameters of an existing class structure.

This should always be used instead of attempting to assign values to instance attributes. It consistently
re-generates the underlying C memory space and sets some book-keeping variables.

Parameters
kwargs – Any argument that may be passed to the class constructor.

84 Chapter 6. Contents

21cmFAST

Attributes

OMl Omega lambda, dark energy density.
cosmo Return an astropy cosmology object for this cosmol-

ogy.
defining_dict Pure python dictionary representation of this class, as

it would appear in C.
fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
pystruct A pure-python dictionary representation of the corre-

sponding C structure.
self Dictionary which if passed to its own constructor will

yield an identical copy.

py21cmfast.inputs.CosmoParams.OMl

property CosmoParams.OMl

Omega lambda, dark energy density.

py21cmfast.inputs.CosmoParams.cosmo

property CosmoParams.cosmo

Return an astropy cosmology object for this cosmology.

py21cmfast.inputs.CosmoParams.defining_dict

property CosmoParams.defining_dict

Pure python dictionary representation of this class, as it would appear in C.

Note: This is not the same as pystruct, as it omits all variables that don’t need to be passed to the
constructor, but appear in the C struct (some can be calculated dynamically based on the inputs). It is also
not the same as self , as it includes the ‘converted’ values for each variable, which are those actually passed
to the C code.

6.4. API Reference 85

21cmFAST

py21cmfast.inputs.CosmoParams.fieldnames

property CosmoParams.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.inputs.CosmoParams.fields

property CosmoParams.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.inputs.CosmoParams.pointer_fields

property CosmoParams.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.inputs.CosmoParams.primitive_fields

property CosmoParams.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.inputs.CosmoParams.pystruct

property CosmoParams.pystruct

A pure-python dictionary representation of the corresponding C structure.

py21cmfast.inputs.CosmoParams.self

property CosmoParams.self

Dictionary which if passed to its own constructor will yield an identical copy.

Note: This differs from pystruct and defining_dict in that it uses the hidden variable value, if it
exists, instead of the exposed one. This prevents from, for example, passing a value which is 10**10**val
(and recurring!).

py21cmfast.inputs.FlagOptions

class py21cmfast.inputs.FlagOptions(*args, **kwargs)
Flag-style options for the ionization routines.

To see default values for each parameter, use FlagOptions._defaults_. All parameters passed in the construc-
tor are also saved as instance attributes which should be considered read-only. This is true of all input-parameter
classes.

Note that all flags are set to False by default, giving the simplest “vanilla” version of 21cmFAST.

Parameters

86 Chapter 6. Contents

21cmFAST

• USE_HALO_FIELD (bool, optional) – Set to True if intending to find and use the halo
field. If False, uses the mean collapse fraction (which is considerably faster).

• USE_MINI_HALOS (bool, optional) – Set to True if using mini-halos parameterization. If
True, USE_MASS_DEPENDENT_ZETA and INHOMO_RECO must be True.

• USE_CMB_HEATING (bool, optional) – Whether to include CMB Heating. (cf Eq.4 of
Meiksin 2021, arxiv.org/abs/2105.14516)

• USE_LYA_HEATING (bool, optional) – Whether to use Lyman-alpha heating. (cf Sec. 3
of Reis+2021, doi.org/10.1093/mnras/stab2089)

• USE_MASS_DEPENDENT_ZETA (bool, optional) – Set to True if using new parameter-
ization. Setting to True will automatically set M_MIN_in_Mass to True.

• SUBCELL_RSDS (bool, optional) – Add sub-cell redshift-space-distortions (cf Sec 2.2 of
Greig+2018). Will only be effective if USE_TS_FLUCT is True.

• INHOMO_RECO (bool, optional) – Whether to perform inhomogeneous recombinations.
Increases the computation time.

• USE_TS_FLUCT (bool, optional) – Whether to perform IGM spin temperature fluctuations
(i.e. X-ray heating). Dramatically increases the computation time.

• M_MIN_in_Mass (bool, optional) – Whether the minimum halo mass (for
ionization) is defined by mass or virial temperature. Automatically True if
USE_MASS_DEPENDENT_ZETA is True.

• PHOTON_CONS (bool, optional) – Whether to perform a small correction to account for
the inherent photon non-conservation.

• FIX_VCB_AVG (bool, optional) – Determines whether to use a fixed vcb=VAVG (regard-
less of USE_RELATIVE_VELOCITIES). It includes the average effect of velocities but not
its fluctuations. See Muñoz+21 (2110.13919).

• USE_VELS_AUX (bool, optional) – Auxiliary variable (not input) to check if minihaloes
are being used without relative velocities and complain

Methods

__init__(*args, **kwargs)

clone(**kwargs) Make a fresh copy of the instance with arbitrary pa-
rameters updated.

convert(key, val) Make any conversions of values before saving to the
instance.

get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
update(**kwargs) Update the parameters of an existing class structure.

6.4. API Reference 87

21cmFAST

py21cmfast.inputs.FlagOptions.__init__

FlagOptions.__init__(*args, **kwargs)

py21cmfast.inputs.FlagOptions.clone

FlagOptions.clone(**kwargs)
Make a fresh copy of the instance with arbitrary parameters updated.

py21cmfast.inputs.FlagOptions.convert

FlagOptions.convert(key, val)
Make any conversions of values before saving to the instance.

py21cmfast.inputs.FlagOptions.get_fieldnames

classmethod FlagOptions.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.inputs.FlagOptions.get_fields

classmethod FlagOptions.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.inputs.FlagOptions.get_pointer_fields

classmethod FlagOptions.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.inputs.FlagOptions.refresh_cstruct

FlagOptions.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

py21cmfast.inputs.FlagOptions.update

FlagOptions.update(**kwargs)
Update the parameters of an existing class structure.

This should always be used instead of attempting to assign values to instance attributes. It consistently
re-generates the underlying C memory space and sets some book-keeping variables.

Parameters
kwargs – Any argument that may be passed to the class constructor.

88 Chapter 6. Contents

21cmFAST

Attributes

INHOMO_RECO Automatically setting INHOMO_RECO to True if
USE_MINI_HALOS.

M_MIN_in_Mass Whether minimum halo mass is defined in mass or
virial temperature.

PHOTON_CONS Automatically setting PHOTON_CONS to False if
USE_MINI_HALOS.

USE_HALO_FIELD Automatically setting
USE_MASS_DEPENDENT_ZETA to False if
USE_MINI_HALOS.

USE_MASS_DEPENDENT_ZETA Automatically setting
USE_MASS_DEPENDENT_ZETA to True if
USE_MINI_HALOS.

USE_TS_FLUCT Automatically setting USE_TS_FLUCT to True if
USE_MINI_HALOS.

defining_dict Pure python dictionary representation of this class, as
it would appear in C.

fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
pystruct A pure-python dictionary representation of the corre-

sponding C structure.
self Dictionary which if passed to its own constructor will

yield an identical copy.

py21cmfast.inputs.FlagOptions.INHOMO_RECO

property FlagOptions.INHOMO_RECO

Automatically setting INHOMO_RECO to True if USE_MINI_HALOS.

6.4. API Reference 89

21cmFAST

py21cmfast.inputs.FlagOptions.M_MIN_in_Mass

property FlagOptions.M_MIN_in_Mass

Whether minimum halo mass is defined in mass or virial temperature.

py21cmfast.inputs.FlagOptions.PHOTON_CONS

property FlagOptions.PHOTON_CONS

Automatically setting PHOTON_CONS to False if USE_MINI_HALOS.

py21cmfast.inputs.FlagOptions.USE_HALO_FIELD

property FlagOptions.USE_HALO_FIELD

Automatically setting USE_MASS_DEPENDENT_ZETA to False if USE_MINI_HALOS.

py21cmfast.inputs.FlagOptions.USE_MASS_DEPENDENT_ZETA

property FlagOptions.USE_MASS_DEPENDENT_ZETA

Automatically setting USE_MASS_DEPENDENT_ZETA to True if USE_MINI_HALOS.

py21cmfast.inputs.FlagOptions.USE_TS_FLUCT

property FlagOptions.USE_TS_FLUCT

Automatically setting USE_TS_FLUCT to True if USE_MINI_HALOS.

py21cmfast.inputs.FlagOptions.defining_dict

property FlagOptions.defining_dict

Pure python dictionary representation of this class, as it would appear in C.

Note: This is not the same as pystruct, as it omits all variables that don’t need to be passed to the
constructor, but appear in the C struct (some can be calculated dynamically based on the inputs). It is also
not the same as self , as it includes the ‘converted’ values for each variable, which are those actually passed
to the C code.

py21cmfast.inputs.FlagOptions.fieldnames

property FlagOptions.fieldnames: List[str]

List names of fields of the underlying C struct.

90 Chapter 6. Contents

21cmFAST

py21cmfast.inputs.FlagOptions.fields

property FlagOptions.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.inputs.FlagOptions.pointer_fields

property FlagOptions.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.inputs.FlagOptions.primitive_fields

property FlagOptions.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.inputs.FlagOptions.pystruct

property FlagOptions.pystruct

A pure-python dictionary representation of the corresponding C structure.

py21cmfast.inputs.FlagOptions.self

property FlagOptions.self

Dictionary which if passed to its own constructor will yield an identical copy.

Note: This differs from pystruct and defining_dict in that it uses the hidden variable value, if it
exists, instead of the exposed one. This prevents from, for example, passing a value which is 10**10**val
(and recurring!).

py21cmfast.inputs.GlobalParams

class py21cmfast.inputs.GlobalParams(wrapped, ffi)

Global parameters for 21cmFAST.

This is a thin wrapper over an allocated C struct, containing parameter values which are used throughout various
computations within 21cmFAST. It is a singleton; that is, a single python (and C) object exists, and no others
should be created. This object is not “passed around”, rather its values are accessed throughout the code.

Parameters in this struct are considered to be options that should usually not have to be modified, and if so,
typically once in any given script or session.

Values can be set in the normal way, eg.:

>>> global_params.ALPHA_UVB = 5.5

The class also provides a context manager for setting parameters for a well-defined portion of the code. For
example, if you would like to set Z_HEAT_MAX for a given run:

6.4. API Reference 91

21cmFAST

>>> with global_params.use(Z_HEAT_MAX=25):
>>> p21c.run_lightcone(...) # uses Z_HEAT_MAX=25 for the entire run.
>>> print(global_params.Z_HEAT_MAX)
35.0

Variables
• ALPHA_UVB (float) – Power law index of the UVB during the EoR. This is only used if

INHOMO_RECO is True (in FlagOptions), in order to compute the local mean free path
inside the cosmic HII regions.

• EVOLVE_DENSITY_LINEARLY (bool) – Whether to evolve the density field with linear theory
(instead of 1LPT or Zel’Dovich). If choosing this option, make sure that your cell size is in
the linear regime at the redshift of interest. Otherwise, make sure you resolve small enough
scales, roughly we find BOX_LEN/DIM should be < 1Mpc

• SMOOTH_EVOLVED_DENSITY_FIELD (bool) – If True, the zeldovich-approximation den-
sity field is additionally smoothed (aside from the implicit boxcar smoothing per-
formed when re-binning the ICs from DIM to HII_DIM) with a Gaussian filter
of width R_smooth_density*BOX_LEN/HII_DIM. The implicit boxcar smoothing in
perturb_field() bins the density field on scale DIM/HII_DIM, similar to what La-
grangian codes do when constructing Eulerian grids. In other words, the density field is
quantized into (DIM/HII_DIM)^3 values. If your usage requires smooth density fields, it is
recommended to set this to True. This also decreases the shot noise present in all grid based
codes, though it overcompensates by an effective loss in resolution. Added in 1.1.0.

• R_smooth_density (float) – Determines the smoothing length to use if
SMOOTH_EVOLVED_DENSITY_FIELD is True.

• HII_ROUND_ERR (float) – Rounding error on the ionization fraction. If the mean xHI is
greater than 1 - HII_ROUND_ERR, then finding HII bubbles is skipped, and a homogeneous
xHI field of ones is returned. Added in v1.1.0.

• FIND_BUBBLE_ALGORITHM (int, {1,2}) – Choose which algorithm used to find HII bub-
bles. Options are: (1) Mesinger & Furlanetto 2007 method of overlapping spheres: paint an
ionized sphere with radius R, centered on pixel where R is filter radius. This method, while
somewhat more accurate, is slower than (2), especially in mostly ionized universes, so only
use for lower resolution boxes (HII_DIM<~400). (2) Center pixel only method (Zahn et al.
2007). This is faster.

• N_POISSON (int) – If not using the halo field to generate HII regions, we provide the op-
tion of including Poisson scatter in the number of sources obtained through the conditional
collapse fraction (which only gives the mean collapse fraction on a particular scale. If the
predicted mean collapse fraction is less than N_POISSON * M_MIN, then Poisson scatter is
added to mimic discrete halos on the subgrid scale (see Zahn+2010).Use a negative number
to turn it off.

Note: If you are interested in snapshots of the same realization at several redshifts,it is
recommended to turn off this feature, as halos can stochastically “pop in and out of” existence
from one redshift to the next.

• R_OVERLAP_FACTOR (float) – When using USE_HALO_FIELD, it is used as a fac-
tor the halo’s radius, R, so that the effective radius is R_eff = R_OVERLAP_FACTOR
* R. Halos whose centers are less than R_eff away from another halo are not allowed.

92 Chapter 6. Contents

21cmFAST

R_OVERLAP_FACTOR = 1 is fully disjoint R_OVERLAP_FACTOR = 0 means that cen-
ters are allowed to lay on the edges of neighboring halos.

• DELTA_CRIT_MODE (int) – The delta_crit to be used for determining whether a halo exists
in a cell 0: delta_crit is constant (i.e. 1.686) 1: delta_crit is the sheth tormen ellipsoidal
collapse correction to delta_crit

• HALO_FILTER (int) – Filter for the density field used to generate the halo field with EPS 0:
real space top hat filter 1: sharp k-space filter 2: gaussian filter

• OPTIMIZE (bool) – Finding halos can be made more efficient if the filter size is sufficiently
large that we can switch to the collapse fraction at a later stage.

• OPTIMIZE_MIN_MASS (float) – Minimum mass on which the optimization for the halo
finder will be used.

• T_USE_VELOCITIES (bool) – Whether to use velocity corrections in 21-cm fields

Note: The approximation used to include peculiar velocity effects works only in the linear
regime, so be careful using this (see Mesinger+2010)

• MAX_DVDR (float) – Maximum velocity gradient along the line of sight in units of the hubble
parameter at z. This is only used in computing the 21cm fields.

Note: Setting this too high can add spurious 21cm power in the early stages, due to the
1-e^-tau ~ tau approximation (see Mesinger’s 21cm intro paper and mao+2011). However,
this is still a good approximation at the <~10% level.

• VELOCITY_COMPONENT (int) – Component of the velocity to be used in 21-cm temperature
maps (1=x, 2=y, 3=z)

• DELTA_R_FACTOR (float) – Factor by which to scroll through filter radius for halos

• DELTA_R_HII_FACTOR (float) – Factor by which to scroll through filter radius for bubbles

• HII_FILTER (int, {0, 1, 2}) – Filter for the Halo or density field used to generate ion-
ization field: 0. real space top hat filter 1. k-space top hat filter 2. gaussian filter

• INITIAL_REDSHIFT (float) – Used to perturb field

• CRIT_DENS_TRANSITION (float) – A transition value for the interpolation tables for cal-
culating the number of ionising photons produced given the input parameters. Log sampling
is desired, however the numerical accuracy near the critical density for collapse (i.e. 1.69)
broke down. Therefore, below the value for CRIT_DENS_TRANSITION log sampling of the
density values is used, whereas above this value linear sampling is used.

• MIN_DENSITY_LOW_LIMIT (float) – Required for using the interpolation tables for the
number of ionising photons. This is a lower limit for the density values that is slightly larger
than -1. Defined as a density contrast.

• RecombPhotonCons (int) – Whether or not to use the recombination term when calculating
the filling factor for performing the photon non-conservation correction.

• PhotonConsStart (float) – A starting value for the neutral fraction where the photon
non-conservation correction is performed exactly. Any value larger than this the photon non-
conservation correction is not performed (i.e. the algorithm is perfectly photon conserving).

6.4. API Reference 93

21cmFAST

• PhotonConsEnd (float) – An end-point for where the photon non-conservation correction
is performed exactly. This is required to remove undesired numerical artifacts in the resultant
neutral fraction histories.

• PhotonConsAsymptoteTo (float) – Beyond PhotonConsEnd the photon non-
conservation correction is extrapolated to yield smooth reionisation histories. This
sets the lowest neutral fraction value that the photon non-conservation correction will be
applied to.

• HEAT_FILTER (int) – Filter used for smoothing the linear density field to obtain the col-
lapsed fraction: 0: real space top hat filter 1: sharp k-space filter 2: gaussian filter

• CLUMPING_FACTOR (float) – Sub grid scale. If you want to run-down from a very high
redshift (>50), you should set this to one.

• Z_HEAT_MAX (float) – Maximum redshift used in the Tk and x_e evolution equations. Tem-
perature and x_e are assumed to be homogeneous at higher redshifts. Lower values will
increase performance.

• R_XLy_MAX (float) – Maximum radius of influence for computing X-ray and Lya pumping
in cMpc. This should be larger than the mean free path of the relevant photons.

• NUM_FILTER_STEPS_FOR_Ts (int) – Number of spherical annuli used to compute
df_coll/dz’ in the simulation box. The spherical annuli are evenly spaced in logR, rang-
ing from the cell size to the box size. spin_temp() will create this many boxes of size
HII_DIM, so be wary of memory usage if values are high.

• ZPRIME_STEP_FACTOR (float) – Logarithmic redshift step-size used in the z’ integral.
Logarithmic dz. Decreasing (closer to unity) increases total simulation time for lightcones,
and for Ts calculations.

• TK_at_Z_HEAT_MAX (float) – If positive, then overwrite default boundary conditions for
the evolution equations with this value. The default is to use the value obtained from REC-
FAST. See also XION_at_Z_HEAT_MAX.

• XION_at_Z_HEAT_MAX (float) – If positive, then overwrite default boundary conditions
for the evolution equations with this value. The default is to use the value obtained from
RECFAST. See also TK_at_Z_HEAT_MAX.

• Pop (int) – Stellar Population responsible for early heating (2 or 3)

• Pop2_ion (float) – Number of ionizing photons per baryon for population 2 stellar species.

• Pop3_ion (float) – Number of ionizing photons per baryon for population 3 stellar species.

• NU_X_BAND_MAX (float) – This is the upper limit of the soft X-ray band (0.5 - 2 keV) used
for normalising the X-ray SED to observational limits set by the X-ray luminosity. Used for
performing the heating rate integrals.

• NU_X_MAX (float) – An upper limit (must be set beyond NU_X_BAND_MAX) for perform-
ing the rate integrals. Given the X-ray SED is modelled as a power-law, this removes the
potential of divergent behaviour for the heating rates. Chosen purely for numerical con-
venience though it is motivated by the fact that observed X-ray SEDs apprear to turn-over
around 10-100 keV (Lehmer et al. 2013, 2015)

• NBINS_LF (int) – Number of bins for the luminosity function calculation.

• P_CUTOFF (bool) – Turn on Warm-Dark-matter power suppression.

• M_WDM (float) – Mass of WDM particle in keV. Ignored if P_CUTOFF is False.

• g_x (float) – Degrees of freedom of WDM particles; 1.5 for fermions.

94 Chapter 6. Contents

21cmFAST

• OMn (float) – Relative density of neutrinos in the universe.

• OMk (float) – Relative density of curvature.

• OMr (float) – Relative density of radiation.

• OMtot (float) – Fractional density of the universe with respect to critical density. Set to
unity for a flat universe.

• Y_He (float) – Helium fraction.

• wl (float) – Dark energy equation of state parameter (wl = -1 for vacuum)

• SHETH_b (float) – Sheth-Tormen parameter for ellipsoidal collapse (for HMF).

Note: The best fit b and c ST params for these 3D realisations have a redshift, and a
DELTA_R_FACTOR dependence, as shown in Mesinger+. For converged mass functions at
z~5-10, set DELTA_R_FACTOR=1.1 and SHETH_b=0.15 and SHETH_c~0.05.

For most purposes, a larger step size is quite sufficient and provides an excellent match to
N-body and smoother mass functions, though the b and c parameters should be changed to
make up for some “stepping-over” massive collapsed halos (see Mesinger, Perna, Haiman
(2005) and Mesinger et al., in preparation).

For example, at z~7-10, one can set DELTA_R_FACTOR=1.3 and SHETH_b=0.15
and SHETH_c=0.25, to increase the speed of the halo finder.

• SHETH_c (float) – Sheth-Tormen parameter for ellipsoidal collapse (for HMF). See notes
for SHETH_b.

• Zreion_HeII (float) – Redshift of helium reionization, currently only used for tau_e

• FILTER (int, {0, 1}) – Filter to use for smoothing. 0. tophat 1. gaussian

• external_table_path (str) – The system path to find external tables for calculation
speedups. DO NOT MODIFY.

• R_BUBBLE_MIN (float) – Minimum radius of bubbles to be searched in cMpc. One can set
this to 0, but should be careful with shot noise if running on a fine, non-linear density grid.
Default is set to L_FACTOR which is (4PI/3)^(-1/3) = 0.620350491.

• M_MIN_INTEGRAL – Minimum mass when performing integral on halo mass function.

• M_MAX_INTEGRAL – Maximum mass when performing integral on halo mass function.

• T_RE – The peak gas temperatures behind the supersonic ionization fronts during reioniza-
tion.

• VAVG – Avg value of the DM-b relative velocity [im km/s], ~0.9*SIGMAVCB (=25.86 km/s)
normally.

6.4. API Reference 95

21cmFAST

Methods

__init__(wrapped, ffi)

filtered_repr(filter_params) Get a fully unique representation of the instance that
filters out some parameters.

items() Yield (name, value) pairs for each element of the
struct.

keys() Return a list of names of elements in the struct.
use(**kwargs) Set given parameters for a certain context.

py21cmfast.inputs.GlobalParams.__init__

GlobalParams.__init__(wrapped, ffi)

py21cmfast.inputs.GlobalParams.filtered_repr

GlobalParams.filtered_repr(filter_params)
Get a fully unique representation of the instance that filters out some parameters.

Parameters
filter_params (list of str) – The parameter names which should not appear in the representa-
tion.

py21cmfast.inputs.GlobalParams.items

GlobalParams.items()

Yield (name, value) pairs for each element of the struct.

py21cmfast.inputs.GlobalParams.keys

GlobalParams.keys()

Return a list of names of elements in the struct.

py21cmfast.inputs.GlobalParams.use

GlobalParams.use(**kwargs)
Set given parameters for a certain context.

Note: Keywords are not case-sensitive.

96 Chapter 6. Contents

21cmFAST

Examples

>>> from py21cmfast import global_params, run_lightcone
>>> with global_params.use(zprime_step_factor=1.1, Sheth_c=0.06):
>>> run_lightcone(redshift=7)

Attributes

external_table_path An ffi char pointer to the path to which external tables
are kept.

wisdoms_path An ffi char pointer to the path to which external tables
are kept.

py21cmfast.inputs.GlobalParams.external_table_path

property GlobalParams.external_table_path

An ffi char pointer to the path to which external tables are kept.

py21cmfast.inputs.GlobalParams.wisdoms_path

property GlobalParams.wisdoms_path

An ffi char pointer to the path to which external tables are kept.

py21cmfast.inputs.UserParams

class py21cmfast.inputs.UserParams(*args, **kwargs)
Structure containing user parameters (with defaults).

To see default values for each parameter, use UserParams._defaults_. All parameters passed in the construc-
tor are also saved as instance attributes which should be considered read-only. This is true of all input-parameter
classes.

Parameters
• HII_DIM (int, optional) – Number of cells for the low-res box. Default 200.

• DIM (int,optional) – Number of cells for the high-res box (sampling ICs) along a principal
axis. To avoid sampling issues, DIM should be at least 3 or 4 times HII_DIM, and an integer
multiple. By default, it is set to 3*HII_DIM.

• NON_CUBIC_FACTOR (float, optional) – Factor which allows the creation of non-
cubic boxes. It will shorten/lengthen the line of sight dimension of all boxes.
NON_CUBIC_FACTOR * DIM/HII_DIM must result in an integer

• BOX_LEN (float, optional) – Length of the box, in Mpc. Default 300 Mpc.

• HMF (int or str, optional) – Determines which halo mass function to be used for the nor-
malisation of the collapsed fraction (default Sheth-Tormen). If string should be one of the
following codes: 0: PS (Press-Schechter) 1: ST (Sheth-Tormen) 2: Watson (Watson FOF)
3: Watson-z (Watson FOF-z)

6.4. API Reference 97

21cmFAST

• USE_RELATIVE_VELOCITIES (int, optional) – Flag to decide whether to use relative
velocities. If True, POWER_SPECTRUM is automatically set to 5. Default False.

• POWER_SPECTRUM (int or str, optional) – Determines which power spectrum to use,
default EH (unless USE_RELATIVE_VELOCITIES is True). If string, use the following
codes: 0: EH 1: BBKS 2: EFSTATHIOU 3: PEEBLES 4: WHITE 5: CLASS (single
cosmology)

• N_THREADS (int, optional) – Sets the number of processors (threads) to be used for per-
forming 21cmFAST. Default 1.

• PERTURB_ON_HIGH_RES (bool, optional) – Whether to perform the Zel’Dovich or
2LPT perturbation on the low or high resolution grid.

• NO_RNG (bool, optional) – Ability to turn off random number generation for initial condi-
tions. Can be useful for debugging and adding in new features

• USE_FFTW_WISDOM (bool, optional) – Whether or not to use stored FFTW_WISDOMs
for improving performance of FFTs

• USE_INTERPOLATION_TABLES (bool, optional) – If True, calculates and evaluates
quantites using interpolation tables, which is considerably faster than when performing in-
tegrals explicitly.

• FAST_FCOLL_TABLES (bool, optional) – Whether to use fast Fcoll tables, as described
in Appendix of Muñoz+21 (2110.13919). Significant speedup for minihaloes.

• USE_2LPT (bool, optional) – Whether to use second-order Lagrangian perturbation theory
(2LPT). Set this to True if the density field or the halo positions are extrapolated to low
redshifts. The current implementation is very naive and adds a factor ~6 to the memory
requirements. Reference: Scoccimarro R., 1998, MNRAS, 299, 1097-1118 Appendix D.

• MINIMIZE_MEMORY (bool, optional) – If set, the code will run in a mode that minimizes
memory usage, at the expense of some CPU/disk-IO. Good for large boxes / small computers.

Methods

__init__(*args, **kwargs)

clone(**kwargs) Make a fresh copy of the instance with arbitrary pa-
rameters updated.

convert(key, val) Make any conversions of values before saving to the
instance.

get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
update(**kwargs) Update the parameters of an existing class structure.

98 Chapter 6. Contents

21cmFAST

py21cmfast.inputs.UserParams.__init__

UserParams.__init__(*args, **kwargs)

py21cmfast.inputs.UserParams.clone

UserParams.clone(**kwargs)
Make a fresh copy of the instance with arbitrary parameters updated.

py21cmfast.inputs.UserParams.convert

UserParams.convert(key, val)
Make any conversions of values before saving to the instance.

py21cmfast.inputs.UserParams.get_fieldnames

classmethod UserParams.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.inputs.UserParams.get_fields

classmethod UserParams.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.inputs.UserParams.get_pointer_fields

classmethod UserParams.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.inputs.UserParams.refresh_cstruct

UserParams.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

py21cmfast.inputs.UserParams.update

UserParams.update(**kwargs)
Update the parameters of an existing class structure.

This should always be used instead of attempting to assign values to instance attributes. It consistently
re-generates the underlying C memory space and sets some book-keeping variables.

Parameters
kwargs – Any argument that may be passed to the class constructor.

6.4. API Reference 99

21cmFAST

Attributes

DIM Number of cells for the high-res box (sampling ICs)
along a principal axis.

FAST_FCOLL_TABLES Check that USE_INTERPOLATION_TABLES is
True.

HII_tot_num_pixels Total number of pixels in the low-res box.
HMF The HMF to use (an int, mapping to a given form).
NON_CUBIC_FACTOR Factor to shorten/lengthen the line-of-sight dimen-

sion (non-cubic boxes).
POWER_SPECTRUM The power spectrum generator to use, as an integer.
USE_INTERPOLATION_TABLES Whether to use interpolation tables for integrals,

speeding things up.
defining_dict Pure python dictionary representation of this class, as

it would appear in C.
fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
hmf_model String representation of the HMF model used.
pointer_fields List of names of fields which have pointer type in the

C struct.
power_spectrum_model String representation of the power spectrum model

used.
primitive_fields List of names of fields which have primitive type in

the C struct.
pystruct A pure-python dictionary representation of the corre-

sponding C structure.
self Dictionary which if passed to its own constructor will

yield an identical copy.
tot_fft_num_pixels Total number of pixels in the high-res box.

py21cmfast.inputs.UserParams.DIM

property UserParams.DIM

Number of cells for the high-res box (sampling ICs) along a principal axis.

100 Chapter 6. Contents

21cmFAST

py21cmfast.inputs.UserParams.FAST_FCOLL_TABLES

property UserParams.FAST_FCOLL_TABLES

Check that USE_INTERPOLATION_TABLES is True.

py21cmfast.inputs.UserParams.HII_tot_num_pixels

property UserParams.HII_tot_num_pixels

Total number of pixels in the low-res box.

py21cmfast.inputs.UserParams.HMF

property UserParams.HMF

The HMF to use (an int, mapping to a given form).

See hmf_model for a string representation.

py21cmfast.inputs.UserParams.NON_CUBIC_FACTOR

property UserParams.NON_CUBIC_FACTOR

Factor to shorten/lengthen the line-of-sight dimension (non-cubic boxes).

py21cmfast.inputs.UserParams.POWER_SPECTRUM

property UserParams.POWER_SPECTRUM

The power spectrum generator to use, as an integer.

See power_spectrum_model() for a string representation.

py21cmfast.inputs.UserParams.USE_INTERPOLATION_TABLES

property UserParams.USE_INTERPOLATION_TABLES

Whether to use interpolation tables for integrals, speeding things up.

py21cmfast.inputs.UserParams.defining_dict

property UserParams.defining_dict

Pure python dictionary representation of this class, as it would appear in C.

Note: This is not the same as pystruct, as it omits all variables that don’t need to be passed to the
constructor, but appear in the C struct (some can be calculated dynamically based on the inputs). It is also
not the same as self , as it includes the ‘converted’ values for each variable, which are those actually passed
to the C code.

6.4. API Reference 101

21cmFAST

py21cmfast.inputs.UserParams.fieldnames

property UserParams.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.inputs.UserParams.fields

property UserParams.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.inputs.UserParams.hmf_model

property UserParams.hmf_model

String representation of the HMF model used.

py21cmfast.inputs.UserParams.pointer_fields

property UserParams.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.inputs.UserParams.power_spectrum_model

property UserParams.power_spectrum_model

String representation of the power spectrum model used.

py21cmfast.inputs.UserParams.primitive_fields

property UserParams.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.inputs.UserParams.pystruct

property UserParams.pystruct

A pure-python dictionary representation of the corresponding C structure.

py21cmfast.inputs.UserParams.self

property UserParams.self

Dictionary which if passed to its own constructor will yield an identical copy.

Note: This differs from pystruct and defining_dict in that it uses the hidden variable value, if it
exists, instead of the exposed one. This prevents from, for example, passing a value which is 10**10**val
(and recurring!).

102 Chapter 6. Contents

21cmFAST

py21cmfast.inputs.UserParams.tot_fft_num_pixels

property UserParams.tot_fft_num_pixels

Total number of pixels in the high-res box.

Exceptions

InputCrossValidationError Error when two parameters from different structs aren't
consistent.

py21cmfast.outputs

Output class objects.

The classes provided by this module exist to simplify access to large datasets created within C. Fundamentally, owner-
ship of the data belongs to these classes, and the C functions merely accesses this and fills it. The various boxes and
lightcones associated with each output are available as instance attributes. Along with the output data, each output
object contains the various input parameter objects necessary to define it.

Warning: These should not be instantiated or filled by the user, but always handled as output objects from the
various functions contained here. Only the data within the objects should be accessed.

Classes

BrightnessTemp(*[, astro_params, flag_options]) A class containing the brightness temperature box.
Coeval(redshift, initial_conditions, ...[, ...]) A full coeval box with all associated data.
HaloField(*[, astro_params, flag_options]) A class containing all fields related to halos.
InitialConditions(*[, user_params,
cosmo_params])

A class containing all initial conditions boxes.

IonizedBox(*[, prev_ionize_redshift]) A class containing all ionized boxes.
LightCone(redshift, user_params, ...[, ...]) A full Lightcone with all associated evolved data.
PerturbHaloField(*[, astro_params, flag_options]) A class containing all fields related to halos.
PerturbedField(*[, user_params, cosmo_params]) A class containing all perturbed field boxes.
TsBox(*[, prev_spin_redshift, ...]) A class containing all spin temperature boxes.

py21cmfast.outputs.BrightnessTemp

class py21cmfast.outputs.BrightnessTemp(*, astro_params: Optional[AstroParams] = None, flag_options:
Optional[FlagOptions] = None, **kwargs)

A class containing the brightness temperature box.

6.4. API Reference 103

21cmFAST

Methods

__init__(*[, astro_params, flag_options]) Base type for output structures from C functions.
compute(*, spin_temp, ionized_box, ...) Compute the function.
ensure_arrays_computed(*arrays[, load]) Check if the given arrays are computed (not just ini-

tialized).
ensure_arrays_inited(*arrays[, init]) Check if the given arrays are initialized (or com-

puted).
ensure_input_computed(input_box[, load]) Ensure all the inputs have been computed.
exists([direc]) Return a bool indicating whether a box matching the

parameters of this instance is in cache.
find_existing([direc]) Try to find existing boxes which match the parameters

of this instance.
from_file(fname[, direc, load_data, h5_group]) Create an instance from a file on disk.
get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
get_required_input_arrays(input_box) Return all input arrays required to compute this ob-

ject.
load_all() Load all possible arrays into memory.
prepare([flush, keep, force]) Prepare the instance for being passed to another func-

tion.
purge([force]) Flush all the boxes out of memory.
read([direc, fname, keys]) Try find and read existing boxes from cache, which

match the parameters of this instance.
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
save([fname, direc, h5_group]) Save the box to disk.
summarize([indent]) Generate a string summary of the struct.
write([direc, fname, write_inputs, mode]) Write the struct in standard HDF5 format.
write_data_to_hdf5_group(group) Write out this object to a particular HDF5 subgroup.

py21cmfast.outputs.BrightnessTemp.__init__

BrightnessTemp.__init__(*, astro_params: Optional[AstroParams] = None, flag_options:
Optional[FlagOptions] = None, **kwargs)

Base type for output structures from C functions.

Parameters
• random_seed – Seed associated with the output.

• dummy – Specify this as a dummy struct, in which no arrays are to be initialized or com-
puted.

• initial – Specify this as an initial struct, where arrays are to be initialized, but do not need
to be computed to pass into another struct’s compute().

104 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.BrightnessTemp.compute

BrightnessTemp.compute(*, spin_temp: TsBox, ionized_box: IonizedBox, perturbed_field: PerturbedField,
hooks: dict)

Compute the function.

py21cmfast.outputs.BrightnessTemp.ensure_arrays_computed

BrightnessTemp.ensure_arrays_computed(*arrays, load=False)→ bool
Check if the given arrays are computed (not just initialized).

py21cmfast.outputs.BrightnessTemp.ensure_arrays_inited

BrightnessTemp.ensure_arrays_inited(*arrays, init=False)→ bool
Check if the given arrays are initialized (or computed).

py21cmfast.outputs.BrightnessTemp.ensure_input_computed

BrightnessTemp.ensure_input_computed(input_box, load=False)→ bool
Ensure all the inputs have been computed.

py21cmfast.outputs.BrightnessTemp.exists

BrightnessTemp.exists(direc=None)
Return a bool indicating whether a box matching the parameters of this instance is in cache.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

py21cmfast.outputs.BrightnessTemp.find_existing

BrightnessTemp.find_existing(direc=None)
Try to find existing boxes which match the parameters of this instance.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

Returns
str – The filename of an existing set of boxes, or None.

6.4. API Reference 105

21cmFAST

py21cmfast.outputs.BrightnessTemp.from_file

classmethod BrightnessTemp.from_file(fname, direc=None, load_data=True, h5_group:
Optional[str] = None)

Create an instance from a file on disk.

Parameters
• fname (str, optional) – Path to the file on disk. May be relative or absolute.

• direc (str, optional) – The directory from which fname is relative to (if it is relative). By
default, will be the cache directory in config.

• load_data (bool, optional) – Whether to read in the data when creating the instance. If
False, a bare instance is created with input parameters – the instance can read data with the
read() method.

• h5_group – The path to the group within the file in which the object is stored.

py21cmfast.outputs.BrightnessTemp.get_fieldnames

classmethod BrightnessTemp.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.outputs.BrightnessTemp.get_fields

classmethod BrightnessTemp.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.outputs.BrightnessTemp.get_pointer_fields

classmethod BrightnessTemp.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.outputs.BrightnessTemp.get_required_input_arrays

BrightnessTemp.get_required_input_arrays(input_box: OutputStruct)→ list[str]
Return all input arrays required to compute this object.

py21cmfast.outputs.BrightnessTemp.load_all

BrightnessTemp.load_all()

Load all possible arrays into memory.

106 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.BrightnessTemp.prepare

BrightnessTemp.prepare(flush: Optional[Sequence[str]] = None, keep: Optional[Sequence[str]] = None,
force: bool = False)

Prepare the instance for being passed to another function.

This will flush all arrays in “flush” from memory, and ensure all arrays in “keep” are in memory. At least
one of these must be provided. By default, the complement of the given parameter is all flushed/kept.

Parameters
• flush – Arrays to flush out of memory. Note that if no file is associated with this instance,

these arrays will be lost forever.

• keep – Arrays to keep or load into memory. Note that if these do not already exist, they will
be loaded from file (if the file exists). Only one of flush and keep should be specified.

• force – Whether to force flushing arrays even if no disk storage exists.

py21cmfast.outputs.BrightnessTemp.purge

BrightnessTemp.purge(force=False)
Flush all the boxes out of memory.

Parameters
force – Whether to force the purge even if no disk storage exists.

py21cmfast.outputs.BrightnessTemp.read

BrightnessTemp.read(direc: ~typing.Optional[~typing.Union[str, ~pathlib.Path]] = None, fname:
~typing.Union[str, ~pathlib.Path, None, <MagicMock id='140646866852240'>,
<MagicMock id='140646866860064'>] = None, keys:
~typing.Optional[~typing.Sequence[str]] = None)

Try find and read existing boxes from cache, which match the parameters of this instance.

Parameters
• direc – The directory in which to search for the boxes. By default, this is the centrally-

managed directory, given by the config.yml in ~/.21cmfast/.

• fname – The filename to read. By default, use the filename associated with this object.
Can be an open h5py File or Group, which will be directly written to.

• keys – The names of boxes to read in (can be a subset). By default, read everything.

py21cmfast.outputs.BrightnessTemp.refresh_cstruct

BrightnessTemp.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

6.4. API Reference 107

21cmFAST

py21cmfast.outputs.BrightnessTemp.save

BrightnessTemp.save(fname=None, direc='.', h5_group=None)
Save the box to disk.

In detail, this just calls write, but changes the default directory to the local directory. This is more user-
friendly, while write() is for automatic use under-the-hood.

Parameters
• fname (str, optional) – The filename to write. Can be an absolute or relative path. If rel-

ative, by default it is relative to the current directory (otherwise relative to direc). By
default, the filename is auto-generated as unique to the set of parameters that go into pro-
ducing the data.

• direc (str, optional) – The directory into which to write the data. By default the current
directory. Ignored if fname is an absolute path.

py21cmfast.outputs.BrightnessTemp.summarize

BrightnessTemp.summarize(indent=0)→ str
Generate a string summary of the struct.

py21cmfast.outputs.BrightnessTemp.write

BrightnessTemp.write(direc=None, fname: ~typing.Union[str, ~pathlib.Path, None, <MagicMock
id='140646578773808'>, <MagicMock id='140646577199072'>] = None,
write_inputs=True, mode='w')

Write the struct in standard HDF5 format.

Parameters
• direc (str, optional) – The directory in which to write the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast/.

• fname (str, optional) – The filename to write to. By default creates a unique filename from
the hash.

• write_inputs (bool, optional) – Whether to write the inputs to the file. Can be useful to
set to False if the input file already exists and has parts already written.

py21cmfast.outputs.BrightnessTemp.write_data_to_hdf5_group

BrightnessTemp.write_data_to_hdf5_group(group: <MagicMock id='140646866776992'>)
Write out this object to a particular HDF5 subgroup.

Parameters
group – The HDF5 group into which to write the object.

108 Chapter 6. Contents

21cmFAST

Attributes

fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
filename The base filename of this object.
global_Tb

is_computed Whether this instance has been computed at all.
path The path to an on-disk version of this object.
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
random_seed The random seed for this particular instance.

py21cmfast.outputs.BrightnessTemp.fieldnames

property BrightnessTemp.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.outputs.BrightnessTemp.fields

property BrightnessTemp.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.outputs.BrightnessTemp.filename

property BrightnessTemp.filename

The base filename of this object.

py21cmfast.outputs.BrightnessTemp.global_Tb

BrightnessTemp.global_Tb = <MagicMock name='mock()' id='140646573235152'>

py21cmfast.outputs.BrightnessTemp.is_computed

property BrightnessTemp.is_computed: bool

Whether this instance has been computed at all.

This is true either if the current instance has called compute(), or if it has a current existing path pointing
to stored data, or if such a path exists.

Just because the instance has been computed does not mean that all relevant quantities are available –
some may have been purged from memory without writing. Use has() to check whether certain arrays are
available.

6.4. API Reference 109

21cmFAST

py21cmfast.outputs.BrightnessTemp.path

property BrightnessTemp.path: Tuple[None, Path]

The path to an on-disk version of this object.

py21cmfast.outputs.BrightnessTemp.pointer_fields

property BrightnessTemp.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.outputs.BrightnessTemp.primitive_fields

property BrightnessTemp.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.outputs.BrightnessTemp.random_seed

property BrightnessTemp.random_seed

The random seed for this particular instance.

py21cmfast.outputs.Coeval

class py21cmfast.outputs.Coeval(redshift: float, initial_conditions: InitialConditions, perturbed_field:
PerturbedField, ionized_box: IonizedBox, brightness_temp:
BrightnessTemp, ts_box: Optional[TsBox] = None, cache_files:
Optional[dict] = None, photon_nonconservation_data=None,
_globals=None)

A full coeval box with all associated data.

Methods

__init__(redshift, initial_conditions, ...)

gather([fname, kinds, clean, direc]) Gather the cached data associated with this object
into its file.

get_cached_data(kind, redshift[, load_data]) Return an OutputStruct object which was cached in
creating this Coeval box.

get_fields([spin_temp]) Obtain a list of name of simulation boxes saved in the
Coeval object.

get_unique_filename() Generate a unique hash filename for this instance.
read(fname[, direc]) Read a lightcone file from disk, creating a LightCone

object.
save([fname, direc]) Save to disk.

110 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.Coeval.__init__

Coeval.__init__(redshift: float, initial_conditions: InitialConditions, perturbed_field: PerturbedField,
ionized_box: IonizedBox, brightness_temp: BrightnessTemp, ts_box: Optional[TsBox] =
None, cache_files: Optional[dict] = None, photon_nonconservation_data=None,
_globals=None)

py21cmfast.outputs.Coeval.gather

Coeval.gather(fname: Optional[Union[str, Path]] = None, kinds: Optional[Sequence] = None, clean: bool
| dict = False, direc: Optional[Union[str, Path]] = None)→ Path

Gather the cached data associated with this object into its file.

py21cmfast.outputs.Coeval.get_cached_data

Coeval.get_cached_data(kind: str, redshift: float, load_data: bool = False)→ _OutputStruct
Return an OutputStruct object which was cached in creating this Coeval box.

Parameters
• kind – The kind of object: “init”, “perturb”, “spin_temp”, “ionize” or “brightness”

• redshift – The (approximate) redshift of the object to return.

• load_data – Whether to actually read the field data of the object in (call obj.read() after
this function to do this manually)

Returns
output – The output struct object.

py21cmfast.outputs.Coeval.get_fields

classmethod Coeval.get_fields(spin_temp: bool = True)→ list[str]
Obtain a list of name of simulation boxes saved in the Coeval object.

py21cmfast.outputs.Coeval.get_unique_filename

Coeval.get_unique_filename()

Generate a unique hash filename for this instance.

py21cmfast.outputs.Coeval.read

classmethod Coeval.read(fname, direc='.')
Read a lightcone file from disk, creating a LightCone object.

Parameters
• fname (str) – The filename path. Can be absolute or relative.

• direc (str) – If fname, is relative, the directory in which to find the file. By default, both
the current directory and default cache and the will be searched, in that order.

6.4. API Reference 111

21cmFAST

Returns
LightCone – A LightCone instance created from the file’s data.

py21cmfast.outputs.Coeval.save

Coeval.save(fname=None, direc='.')
Save to disk.

This function has defaults that make it easy to save a unique box to the current directory.

Parameters
• fname (str, optional) – The filename to write, default a unique name produced by the inputs.

• direc (str, optional) – The directory into which to write the file. Default is the current
directory.

Returns
str – The filename to which the box was written.

Attributes

astro_params Astro params shared by all datasets.
cosmo_params Cosmo params shared by all datasets.
flag_options Flag Options shared by all datasets.
random_seed Random seed shared by all datasets.
user_params User params shared by all datasets.

py21cmfast.outputs.Coeval.astro_params

property Coeval.astro_params

Astro params shared by all datasets.

py21cmfast.outputs.Coeval.cosmo_params

property Coeval.cosmo_params

Cosmo params shared by all datasets.

py21cmfast.outputs.Coeval.flag_options

property Coeval.flag_options

Flag Options shared by all datasets.

112 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.Coeval.random_seed

property Coeval.random_seed

Random seed shared by all datasets.

py21cmfast.outputs.Coeval.user_params

property Coeval.user_params

User params shared by all datasets.

py21cmfast.outputs.HaloField

class py21cmfast.outputs.HaloField(*, astro_params: Optional[AstroParams] = None, flag_options:
Optional[FlagOptions] = None, **kwargs)

A class containing all fields related to halos.

Methods

__init__(*[, astro_params, flag_options]) Base type for output structures from C functions.
compute(*, ics, hooks) Compute the function.
ensure_arrays_computed(*arrays[, load]) Check if the given arrays are computed (not just ini-

tialized).
ensure_arrays_inited(*arrays[, init]) Check if the given arrays are initialized (or com-

puted).
ensure_input_computed(input_box[, load]) Ensure all the inputs have been computed.
exists([direc]) Return a bool indicating whether a box matching the

parameters of this instance is in cache.
find_existing([direc]) Try to find existing boxes which match the parameters

of this instance.
from_file(fname[, direc, load_data, h5_group]) Create an instance from a file on disk.
get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
get_required_input_arrays(input_box) Return all input arrays required to compute this ob-

ject.
load_all() Load all possible arrays into memory.
prepare([flush, keep, force]) Prepare the instance for being passed to another func-

tion.
purge([force]) Flush all the boxes out of memory.
read([direc, fname, keys]) Try find and read existing boxes from cache, which

match the parameters of this instance.
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
save([fname, direc, h5_group]) Save the box to disk.
summarize([indent]) Generate a string summary of the struct.
write([direc, fname, write_inputs, mode]) Write the struct in standard HDF5 format.
write_data_to_hdf5_group(group) Write out this object to a particular HDF5 subgroup.

6.4. API Reference 113

21cmFAST

py21cmfast.outputs.HaloField.__init__

HaloField.__init__(*, astro_params: Optional[AstroParams] = None, flag_options:
Optional[FlagOptions] = None, **kwargs)

Base type for output structures from C functions.

Parameters
• random_seed – Seed associated with the output.

• dummy – Specify this as a dummy struct, in which no arrays are to be initialized or com-
puted.

• initial – Specify this as an initial struct, where arrays are to be initialized, but do not need
to be computed to pass into another struct’s compute().

py21cmfast.outputs.HaloField.compute

HaloField.compute(*, ics: InitialConditions, hooks: dict)
Compute the function.

py21cmfast.outputs.HaloField.ensure_arrays_computed

HaloField.ensure_arrays_computed(*arrays, load=False)→ bool
Check if the given arrays are computed (not just initialized).

py21cmfast.outputs.HaloField.ensure_arrays_inited

HaloField.ensure_arrays_inited(*arrays, init=False)→ bool
Check if the given arrays are initialized (or computed).

py21cmfast.outputs.HaloField.ensure_input_computed

HaloField.ensure_input_computed(input_box, load=False)→ bool
Ensure all the inputs have been computed.

py21cmfast.outputs.HaloField.exists

HaloField.exists(direc=None)
Return a bool indicating whether a box matching the parameters of this instance is in cache.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

114 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.HaloField.find_existing

HaloField.find_existing(direc=None)
Try to find existing boxes which match the parameters of this instance.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

Returns
str – The filename of an existing set of boxes, or None.

py21cmfast.outputs.HaloField.from_file

classmethod HaloField.from_file(fname, direc=None, load_data=True, h5_group: Optional[str] =
None)

Create an instance from a file on disk.

Parameters
• fname (str, optional) – Path to the file on disk. May be relative or absolute.

• direc (str, optional) – The directory from which fname is relative to (if it is relative). By
default, will be the cache directory in config.

• load_data (bool, optional) – Whether to read in the data when creating the instance. If
False, a bare instance is created with input parameters – the instance can read data with the
read() method.

• h5_group – The path to the group within the file in which the object is stored.

py21cmfast.outputs.HaloField.get_fieldnames

classmethod HaloField.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.outputs.HaloField.get_fields

classmethod HaloField.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.outputs.HaloField.get_pointer_fields

classmethod HaloField.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

6.4. API Reference 115

21cmFAST

py21cmfast.outputs.HaloField.get_required_input_arrays

HaloField.get_required_input_arrays(input_box: OutputStruct)→ list[str]
Return all input arrays required to compute this object.

py21cmfast.outputs.HaloField.load_all

HaloField.load_all()

Load all possible arrays into memory.

py21cmfast.outputs.HaloField.prepare

HaloField.prepare(flush: Optional[Sequence[str]] = None, keep: Optional[Sequence[str]] = None, force:
bool = False)

Prepare the instance for being passed to another function.

This will flush all arrays in “flush” from memory, and ensure all arrays in “keep” are in memory. At least
one of these must be provided. By default, the complement of the given parameter is all flushed/kept.

Parameters
• flush – Arrays to flush out of memory. Note that if no file is associated with this instance,

these arrays will be lost forever.

• keep – Arrays to keep or load into memory. Note that if these do not already exist, they will
be loaded from file (if the file exists). Only one of flush and keep should be specified.

• force – Whether to force flushing arrays even if no disk storage exists.

py21cmfast.outputs.HaloField.purge

HaloField.purge(force=False)
Flush all the boxes out of memory.

Parameters
force – Whether to force the purge even if no disk storage exists.

py21cmfast.outputs.HaloField.read

HaloField.read(direc: ~typing.Optional[~typing.Union[str, ~pathlib.Path]] = None, fname:
~typing.Union[str, ~pathlib.Path, None, <MagicMock id='140646866852240'>,
<MagicMock id='140646866860064'>] = None, keys:
~typing.Optional[~typing.Sequence[str]] = None)

Try find and read existing boxes from cache, which match the parameters of this instance.

Parameters
• direc – The directory in which to search for the boxes. By default, this is the centrally-

managed directory, given by the config.yml in ~/.21cmfast/.

• fname – The filename to read. By default, use the filename associated with this object.
Can be an open h5py File or Group, which will be directly written to.

• keys – The names of boxes to read in (can be a subset). By default, read everything.

116 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.HaloField.refresh_cstruct

HaloField.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

py21cmfast.outputs.HaloField.save

HaloField.save(fname=None, direc='.', h5_group=None)
Save the box to disk.

In detail, this just calls write, but changes the default directory to the local directory. This is more user-
friendly, while write() is for automatic use under-the-hood.

Parameters
• fname (str, optional) – The filename to write. Can be an absolute or relative path. If rel-

ative, by default it is relative to the current directory (otherwise relative to direc). By
default, the filename is auto-generated as unique to the set of parameters that go into pro-
ducing the data.

• direc (str, optional) – The directory into which to write the data. By default the current
directory. Ignored if fname is an absolute path.

py21cmfast.outputs.HaloField.summarize

HaloField.summarize(indent=0)→ str
Generate a string summary of the struct.

py21cmfast.outputs.HaloField.write

HaloField.write(direc=None, fname: ~typing.Union[str, ~pathlib.Path, None, <MagicMock
id='140646578773808'>, <MagicMock id='140646577199072'>] = None,
write_inputs=True, mode='w')

Write the struct in standard HDF5 format.

Parameters
• direc (str, optional) – The directory in which to write the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast/.

• fname (str, optional) – The filename to write to. By default creates a unique filename from
the hash.

• write_inputs (bool, optional) – Whether to write the inputs to the file. Can be useful to
set to False if the input file already exists and has parts already written.

6.4. API Reference 117

21cmFAST

py21cmfast.outputs.HaloField.write_data_to_hdf5_group

HaloField.write_data_to_hdf5_group(group: <MagicMock id='140646866776992'>)
Write out this object to a particular HDF5 subgroup.

Parameters
group – The HDF5 group into which to write the object.

Attributes

fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
filename The base filename of this object.
is_computed Whether this instance has been computed at all.
path The path to an on-disk version of this object.
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
random_seed The random seed for this particular instance.

py21cmfast.outputs.HaloField.fieldnames

property HaloField.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.outputs.HaloField.fields

property HaloField.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.outputs.HaloField.filename

property HaloField.filename

The base filename of this object.

py21cmfast.outputs.HaloField.is_computed

property HaloField.is_computed: bool

Whether this instance has been computed at all.

This is true either if the current instance has called compute(), or if it has a current existing path pointing
to stored data, or if such a path exists.

Just because the instance has been computed does not mean that all relevant quantities are available –
some may have been purged from memory without writing. Use has() to check whether certain arrays are
available.

118 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.HaloField.path

property HaloField.path: Tuple[None, Path]

The path to an on-disk version of this object.

py21cmfast.outputs.HaloField.pointer_fields

property HaloField.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.outputs.HaloField.primitive_fields

property HaloField.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.outputs.HaloField.random_seed

property HaloField.random_seed

The random seed for this particular instance.

py21cmfast.outputs.InitialConditions

class py21cmfast.outputs.InitialConditions(*, user_params=None, cosmo_params=None, **kwargs)
A class containing all initial conditions boxes.

6.4. API Reference 119

21cmFAST

Methods

__init__(*[, user_params, cosmo_params]) Base type for output structures from C functions.
compute(hooks) Compute the function.
ensure_arrays_computed(*arrays[, load]) Check if the given arrays are computed (not just ini-

tialized).
ensure_arrays_inited(*arrays[, init]) Check if the given arrays are initialized (or com-

puted).
ensure_input_computed(input_box[, load]) Ensure all the inputs have been computed.
exists([direc]) Return a bool indicating whether a box matching the

parameters of this instance is in cache.
find_existing([direc]) Try to find existing boxes which match the parameters

of this instance.
from_file(fname[, direc, load_data, h5_group]) Create an instance from a file on disk.
get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
get_required_input_arrays(input_box) Return all input arrays required to compute this ob-

ject.
load_all() Load all possible arrays into memory.
prepare([flush, keep, force]) Prepare the instance for being passed to another func-

tion.
prepare_for_perturb(flag_options[, force]) Ensure the ICs have all the boxes loaded for perturb,

but no extra.
prepare_for_spin_temp(flag_options[, force]) Ensure ICs have all boxes required for spin_temp, and

no more.
purge([force]) Flush all the boxes out of memory.
read([direc, fname, keys]) Try find and read existing boxes from cache, which

match the parameters of this instance.
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
save([fname, direc, h5_group]) Save the box to disk.
summarize([indent]) Generate a string summary of the struct.
write([direc, fname, write_inputs, mode]) Write the struct in standard HDF5 format.
write_data_to_hdf5_group(group) Write out this object to a particular HDF5 subgroup.

py21cmfast.outputs.InitialConditions.__init__

InitialConditions.__init__(*, user_params=None, cosmo_params=None, **kwargs)
Base type for output structures from C functions.

Parameters
• random_seed – Seed associated with the output.

• dummy – Specify this as a dummy struct, in which no arrays are to be initialized or com-
puted.

• initial – Specify this as an initial struct, where arrays are to be initialized, but do not need
to be computed to pass into another struct’s compute().

120 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.InitialConditions.compute

InitialConditions.compute(hooks: dict)
Compute the function.

py21cmfast.outputs.InitialConditions.ensure_arrays_computed

InitialConditions.ensure_arrays_computed(*arrays, load=False)→ bool
Check if the given arrays are computed (not just initialized).

py21cmfast.outputs.InitialConditions.ensure_arrays_inited

InitialConditions.ensure_arrays_inited(*arrays, init=False)→ bool
Check if the given arrays are initialized (or computed).

py21cmfast.outputs.InitialConditions.ensure_input_computed

InitialConditions.ensure_input_computed(input_box, load=False)→ bool
Ensure all the inputs have been computed.

py21cmfast.outputs.InitialConditions.exists

InitialConditions.exists(direc=None)
Return a bool indicating whether a box matching the parameters of this instance is in cache.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

py21cmfast.outputs.InitialConditions.find_existing

InitialConditions.find_existing(direc=None)
Try to find existing boxes which match the parameters of this instance.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

Returns
str – The filename of an existing set of boxes, or None.

6.4. API Reference 121

21cmFAST

py21cmfast.outputs.InitialConditions.from_file

classmethod InitialConditions.from_file(fname, direc=None, load_data=True, h5_group:
Optional[str] = None)

Create an instance from a file on disk.

Parameters
• fname (str, optional) – Path to the file on disk. May be relative or absolute.

• direc (str, optional) – The directory from which fname is relative to (if it is relative). By
default, will be the cache directory in config.

• load_data (bool, optional) – Whether to read in the data when creating the instance. If
False, a bare instance is created with input parameters – the instance can read data with the
read() method.

• h5_group – The path to the group within the file in which the object is stored.

py21cmfast.outputs.InitialConditions.get_fieldnames

classmethod InitialConditions.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.outputs.InitialConditions.get_fields

classmethod InitialConditions.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.outputs.InitialConditions.get_pointer_fields

classmethod InitialConditions.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.outputs.InitialConditions.get_required_input_arrays

InitialConditions.get_required_input_arrays(input_box: OutputStruct)→ list[str]
Return all input arrays required to compute this object.

py21cmfast.outputs.InitialConditions.load_all

InitialConditions.load_all()

Load all possible arrays into memory.

122 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.InitialConditions.prepare

InitialConditions.prepare(flush: Optional[Sequence[str]] = None, keep: Optional[Sequence[str]] =
None, force: bool = False)

Prepare the instance for being passed to another function.

This will flush all arrays in “flush” from memory, and ensure all arrays in “keep” are in memory. At least
one of these must be provided. By default, the complement of the given parameter is all flushed/kept.

Parameters
• flush – Arrays to flush out of memory. Note that if no file is associated with this instance,

these arrays will be lost forever.

• keep – Arrays to keep or load into memory. Note that if these do not already exist, they will
be loaded from file (if the file exists). Only one of flush and keep should be specified.

• force – Whether to force flushing arrays even if no disk storage exists.

py21cmfast.outputs.InitialConditions.prepare_for_perturb

InitialConditions.prepare_for_perturb(flag_options: FlagOptions, force: bool = False)
Ensure the ICs have all the boxes loaded for perturb, but no extra.

py21cmfast.outputs.InitialConditions.prepare_for_spin_temp

InitialConditions.prepare_for_spin_temp(flag_options: FlagOptions, force: bool = False)
Ensure ICs have all boxes required for spin_temp, and no more.

py21cmfast.outputs.InitialConditions.purge

InitialConditions.purge(force=False)
Flush all the boxes out of memory.

Parameters
force – Whether to force the purge even if no disk storage exists.

py21cmfast.outputs.InitialConditions.read

InitialConditions.read(direc: ~typing.Optional[~typing.Union[str, ~pathlib.Path]] = None, fname:
~typing.Union[str, ~pathlib.Path, None, <MagicMock id='140646866852240'>,
<MagicMock id='140646866860064'>] = None, keys:
~typing.Optional[~typing.Sequence[str]] = None)

Try find and read existing boxes from cache, which match the parameters of this instance.

Parameters
• direc – The directory in which to search for the boxes. By default, this is the centrally-

managed directory, given by the config.yml in ~/.21cmfast/.

• fname – The filename to read. By default, use the filename associated with this object.
Can be an open h5py File or Group, which will be directly written to.

• keys – The names of boxes to read in (can be a subset). By default, read everything.

6.4. API Reference 123

21cmFAST

py21cmfast.outputs.InitialConditions.refresh_cstruct

InitialConditions.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

py21cmfast.outputs.InitialConditions.save

InitialConditions.save(fname=None, direc='.', h5_group=None)
Save the box to disk.

In detail, this just calls write, but changes the default directory to the local directory. This is more user-
friendly, while write() is for automatic use under-the-hood.

Parameters
• fname (str, optional) – The filename to write. Can be an absolute or relative path. If rel-

ative, by default it is relative to the current directory (otherwise relative to direc). By
default, the filename is auto-generated as unique to the set of parameters that go into pro-
ducing the data.

• direc (str, optional) – The directory into which to write the data. By default the current
directory. Ignored if fname is an absolute path.

py21cmfast.outputs.InitialConditions.summarize

InitialConditions.summarize(indent=0)→ str
Generate a string summary of the struct.

py21cmfast.outputs.InitialConditions.write

InitialConditions.write(direc=None, fname: ~typing.Union[str, ~pathlib.Path, None, <MagicMock
id='140646578773808'>, <MagicMock id='140646577199072'>] = None,
write_inputs=True, mode='w')

Write the struct in standard HDF5 format.

Parameters
• direc (str, optional) – The directory in which to write the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast/.

• fname (str, optional) – The filename to write to. By default creates a unique filename from
the hash.

• write_inputs (bool, optional) – Whether to write the inputs to the file. Can be useful to
set to False if the input file already exists and has parts already written.

124 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.InitialConditions.write_data_to_hdf5_group

InitialConditions.write_data_to_hdf5_group(group: <MagicMock id='140646866776992'>)
Write out this object to a particular HDF5 subgroup.

Parameters
group – The HDF5 group into which to write the object.

Attributes

fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
filename The base filename of this object.
is_computed Whether this instance has been computed at all.
path The path to an on-disk version of this object.
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
random_seed The random seed for this particular instance.

py21cmfast.outputs.InitialConditions.fieldnames

property InitialConditions.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.outputs.InitialConditions.fields

property InitialConditions.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.outputs.InitialConditions.filename

property InitialConditions.filename

The base filename of this object.

py21cmfast.outputs.InitialConditions.is_computed

property InitialConditions.is_computed: bool

Whether this instance has been computed at all.

This is true either if the current instance has called compute(), or if it has a current existing path pointing
to stored data, or if such a path exists.

Just because the instance has been computed does not mean that all relevant quantities are available –
some may have been purged from memory without writing. Use has() to check whether certain arrays are
available.

6.4. API Reference 125

21cmFAST

py21cmfast.outputs.InitialConditions.path

property InitialConditions.path: Tuple[None, Path]

The path to an on-disk version of this object.

py21cmfast.outputs.InitialConditions.pointer_fields

property InitialConditions.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.outputs.InitialConditions.primitive_fields

property InitialConditions.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.outputs.InitialConditions.random_seed

property InitialConditions.random_seed

The random seed for this particular instance.

py21cmfast.outputs.IonizedBox

class py21cmfast.outputs.IonizedBox(*, prev_ionize_redshift: Optional[float] = None, **kwargs)
A class containing all ionized boxes.

126 Chapter 6. Contents

21cmFAST

Methods

__init__(*[, prev_ionize_redshift]) Base type for output structures from C functions.
compute(*, perturbed_field, ...) Compute the function.
ensure_arrays_computed(*arrays[, load]) Check if the given arrays are computed (not just ini-

tialized).
ensure_arrays_inited(*arrays[, init]) Check if the given arrays are initialized (or com-

puted).
ensure_input_computed(input_box[, load]) Ensure all the inputs have been computed.
exists([direc]) Return a bool indicating whether a box matching the

parameters of this instance is in cache.
find_existing([direc]) Try to find existing boxes which match the parameters

of this instance.
from_file(fname[, direc, load_data, h5_group]) Create an instance from a file on disk.
get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
get_required_input_arrays(input_box) Return all input arrays required to compute this ob-

ject.
load_all() Load all possible arrays into memory.
prepare([flush, keep, force]) Prepare the instance for being passed to another func-

tion.
purge([force]) Flush all the boxes out of memory.
read([direc, fname, keys]) Try find and read existing boxes from cache, which

match the parameters of this instance.
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
save([fname, direc, h5_group]) Save the box to disk.
summarize([indent]) Generate a string summary of the struct.
write([direc, fname, write_inputs, mode]) Write the struct in standard HDF5 format.
write_data_to_hdf5_group(group) Write out this object to a particular HDF5 subgroup.

py21cmfast.outputs.IonizedBox.__init__

IonizedBox.__init__(*, prev_ionize_redshift: Optional[float] = None, **kwargs)
Base type for output structures from C functions.

Parameters
• random_seed – Seed associated with the output.

• dummy – Specify this as a dummy struct, in which no arrays are to be initialized or com-
puted.

• initial – Specify this as an initial struct, where arrays are to be initialized, but do not need
to be computed to pass into another struct’s compute().

6.4. API Reference 127

21cmFAST

py21cmfast.outputs.IonizedBox.compute

IonizedBox.compute(*, perturbed_field: PerturbedField, prev_perturbed_field: PerturbedField,
prev_ionize_box, spin_temp: TsBox, pt_halos: PerturbHaloField, ics:
InitialConditions, hooks: dict)

Compute the function.

py21cmfast.outputs.IonizedBox.ensure_arrays_computed

IonizedBox.ensure_arrays_computed(*arrays, load=False)→ bool
Check if the given arrays are computed (not just initialized).

py21cmfast.outputs.IonizedBox.ensure_arrays_inited

IonizedBox.ensure_arrays_inited(*arrays, init=False)→ bool
Check if the given arrays are initialized (or computed).

py21cmfast.outputs.IonizedBox.ensure_input_computed

IonizedBox.ensure_input_computed(input_box, load=False)→ bool
Ensure all the inputs have been computed.

py21cmfast.outputs.IonizedBox.exists

IonizedBox.exists(direc=None)
Return a bool indicating whether a box matching the parameters of this instance is in cache.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

py21cmfast.outputs.IonizedBox.find_existing

IonizedBox.find_existing(direc=None)
Try to find existing boxes which match the parameters of this instance.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

Returns
str – The filename of an existing set of boxes, or None.

128 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.IonizedBox.from_file

classmethod IonizedBox.from_file(fname, direc=None, load_data=True, h5_group: Optional[str] =
None)

Create an instance from a file on disk.

Parameters
• fname (str, optional) – Path to the file on disk. May be relative or absolute.

• direc (str, optional) – The directory from which fname is relative to (if it is relative). By
default, will be the cache directory in config.

• load_data (bool, optional) – Whether to read in the data when creating the instance. If
False, a bare instance is created with input parameters – the instance can read data with the
read() method.

• h5_group – The path to the group within the file in which the object is stored.

py21cmfast.outputs.IonizedBox.get_fieldnames

classmethod IonizedBox.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.outputs.IonizedBox.get_fields

classmethod IonizedBox.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.outputs.IonizedBox.get_pointer_fields

classmethod IonizedBox.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.outputs.IonizedBox.get_required_input_arrays

IonizedBox.get_required_input_arrays(input_box: OutputStruct)→ list[str]
Return all input arrays required to compute this object.

py21cmfast.outputs.IonizedBox.load_all

IonizedBox.load_all()

Load all possible arrays into memory.

6.4. API Reference 129

21cmFAST

py21cmfast.outputs.IonizedBox.prepare

IonizedBox.prepare(flush: Optional[Sequence[str]] = None, keep: Optional[Sequence[str]] = None,
force: bool = False)

Prepare the instance for being passed to another function.

This will flush all arrays in “flush” from memory, and ensure all arrays in “keep” are in memory. At least
one of these must be provided. By default, the complement of the given parameter is all flushed/kept.

Parameters
• flush – Arrays to flush out of memory. Note that if no file is associated with this instance,

these arrays will be lost forever.

• keep – Arrays to keep or load into memory. Note that if these do not already exist, they will
be loaded from file (if the file exists). Only one of flush and keep should be specified.

• force – Whether to force flushing arrays even if no disk storage exists.

py21cmfast.outputs.IonizedBox.purge

IonizedBox.purge(force=False)
Flush all the boxes out of memory.

Parameters
force – Whether to force the purge even if no disk storage exists.

py21cmfast.outputs.IonizedBox.read

IonizedBox.read(direc: ~typing.Optional[~typing.Union[str, ~pathlib.Path]] = None, fname:
~typing.Union[str, ~pathlib.Path, None, <MagicMock id='140646866852240'>,
<MagicMock id='140646866860064'>] = None, keys:
~typing.Optional[~typing.Sequence[str]] = None)

Try find and read existing boxes from cache, which match the parameters of this instance.

Parameters
• direc – The directory in which to search for the boxes. By default, this is the centrally-

managed directory, given by the config.yml in ~/.21cmfast/.

• fname – The filename to read. By default, use the filename associated with this object.
Can be an open h5py File or Group, which will be directly written to.

• keys – The names of boxes to read in (can be a subset). By default, read everything.

py21cmfast.outputs.IonizedBox.refresh_cstruct

IonizedBox.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

130 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.IonizedBox.save

IonizedBox.save(fname=None, direc='.', h5_group=None)
Save the box to disk.

In detail, this just calls write, but changes the default directory to the local directory. This is more user-
friendly, while write() is for automatic use under-the-hood.

Parameters
• fname (str, optional) – The filename to write. Can be an absolute or relative path. If rel-

ative, by default it is relative to the current directory (otherwise relative to direc). By
default, the filename is auto-generated as unique to the set of parameters that go into pro-
ducing the data.

• direc (str, optional) – The directory into which to write the data. By default the current
directory. Ignored if fname is an absolute path.

py21cmfast.outputs.IonizedBox.summarize

IonizedBox.summarize(indent=0)→ str
Generate a string summary of the struct.

py21cmfast.outputs.IonizedBox.write

IonizedBox.write(direc=None, fname: ~typing.Union[str, ~pathlib.Path, None, <MagicMock
id='140646578773808'>, <MagicMock id='140646577199072'>] = None,
write_inputs=True, mode='w')

Write the struct in standard HDF5 format.

Parameters
• direc (str, optional) – The directory in which to write the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast/.

• fname (str, optional) – The filename to write to. By default creates a unique filename from
the hash.

• write_inputs (bool, optional) – Whether to write the inputs to the file. Can be useful to
set to False if the input file already exists and has parts already written.

py21cmfast.outputs.IonizedBox.write_data_to_hdf5_group

IonizedBox.write_data_to_hdf5_group(group: <MagicMock id='140646866776992'>)
Write out this object to a particular HDF5 subgroup.

Parameters
group – The HDF5 group into which to write the object.

6.4. API Reference 131

21cmFAST

Attributes

fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
filename The base filename of this object.
global_xH

is_computed Whether this instance has been computed at all.
path The path to an on-disk version of this object.
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
random_seed The random seed for this particular instance.

py21cmfast.outputs.IonizedBox.fieldnames

property IonizedBox.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.outputs.IonizedBox.fields

property IonizedBox.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.outputs.IonizedBox.filename

property IonizedBox.filename

The base filename of this object.

py21cmfast.outputs.IonizedBox.global_xH

IonizedBox.global_xH = <MagicMock name='mock()' id='140646573235152'>

py21cmfast.outputs.IonizedBox.is_computed

property IonizedBox.is_computed: bool

Whether this instance has been computed at all.

This is true either if the current instance has called compute(), or if it has a current existing path pointing
to stored data, or if such a path exists.

Just because the instance has been computed does not mean that all relevant quantities are available –
some may have been purged from memory without writing. Use has() to check whether certain arrays are
available.

132 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.IonizedBox.path

property IonizedBox.path: Tuple[None, Path]

The path to an on-disk version of this object.

py21cmfast.outputs.IonizedBox.pointer_fields

property IonizedBox.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.outputs.IonizedBox.primitive_fields

property IonizedBox.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.outputs.IonizedBox.random_seed

property IonizedBox.random_seed

The random seed for this particular instance.

py21cmfast.outputs.LightCone

class py21cmfast.outputs.LightCone(redshift, user_params, cosmo_params, astro_params, flag_options,
random_seed, lightcones, node_redshifts=None,
global_quantities=None, photon_nonconservation_data=None,
cache_files: Optional[dict] = None, _globals=None,
log10_mturnovers=None, log10_mturnovers_mini=None)

A full Lightcone with all associated evolved data.

Methods

__init__(redshift, user_params, ...[, ...])

gather([fname, kinds, clean, direc]) Gather the cached data associated with this object
into its file.

get_cached_data(kind, redshift[, load_data]) Return an OutputStruct object which was cached in
creating this Coeval box.

get_unique_filename() Generate a unique hash filename for this instance.
read(fname[, direc]) Read a lightcone file from disk, creating a LightCone

object.
save([fname, direc]) Save to disk.

6.4. API Reference 133

21cmFAST

py21cmfast.outputs.LightCone.__init__

LightCone.__init__(redshift, user_params, cosmo_params, astro_params, flag_options, random_seed,
lightcones, node_redshifts=None, global_quantities=None,
photon_nonconservation_data=None, cache_files: Optional[dict] = None,
_globals=None, log10_mturnovers=None, log10_mturnovers_mini=None)

py21cmfast.outputs.LightCone.gather

LightCone.gather(fname: Optional[Union[str, Path]] = None, kinds: Optional[Sequence] = None, clean:
bool | dict = False, direc: Optional[Union[str, Path]] = None)→ Path

Gather the cached data associated with this object into its file.

py21cmfast.outputs.LightCone.get_cached_data

LightCone.get_cached_data(kind: str, redshift: float, load_data: bool = False)→ _OutputStruct
Return an OutputStruct object which was cached in creating this Coeval box.

Parameters
• kind – The kind of object: “init”, “perturb”, “spin_temp”, “ionize” or “brightness”

• redshift – The (approximate) redshift of the object to return.

• load_data – Whether to actually read the field data of the object in (call obj.read() after
this function to do this manually)

Returns
output – The output struct object.

py21cmfast.outputs.LightCone.get_unique_filename

LightCone.get_unique_filename()

Generate a unique hash filename for this instance.

py21cmfast.outputs.LightCone.read

classmethod LightCone.read(fname, direc='.')
Read a lightcone file from disk, creating a LightCone object.

Parameters
• fname (str) – The filename path. Can be absolute or relative.

• direc (str) – If fname, is relative, the directory in which to find the file. By default, both
the current directory and default cache and the will be searched, in that order.

Returns
LightCone – A LightCone instance created from the file’s data.

134 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.LightCone.save

LightCone.save(fname=None, direc='.')
Save to disk.

This function has defaults that make it easy to save a unique box to the current directory.

Parameters
• fname (str, optional) – The filename to write, default a unique name produced by the inputs.

• direc (str, optional) – The directory into which to write the file. Default is the current
directory.

Returns
str – The filename to which the box was written.

Attributes

cell_size Cell size [Mpc] of the lightcone voxels.
global_xHI Global neutral fraction function.
lightcone_coords Co-ordinates [Mpc] of each cell along the redshift

axis.
lightcone_dimensions Lightcone size over each dimension -- tuple of (x,y,z)

in Mpc.
lightcone_distances Comoving distance to each cell along the redshift

axis, from z=0.
lightcone_redshifts Redshift of each cell along the redshift axis.
n_slices Number of redshift slices in the lightcone.
shape Shape of the lightcone as a 3-tuple.

py21cmfast.outputs.LightCone.cell_size

property LightCone.cell_size

Cell size [Mpc] of the lightcone voxels.

py21cmfast.outputs.LightCone.global_xHI

property LightCone.global_xHI

Global neutral fraction function.

py21cmfast.outputs.LightCone.lightcone_coords

property LightCone.lightcone_coords

Co-ordinates [Mpc] of each cell along the redshift axis.

6.4. API Reference 135

21cmFAST

py21cmfast.outputs.LightCone.lightcone_dimensions

property LightCone.lightcone_dimensions

Lightcone size over each dimension – tuple of (x,y,z) in Mpc.

py21cmfast.outputs.LightCone.lightcone_distances

property LightCone.lightcone_distances

Comoving distance to each cell along the redshift axis, from z=0.

py21cmfast.outputs.LightCone.lightcone_redshifts

property LightCone.lightcone_redshifts

Redshift of each cell along the redshift axis.

py21cmfast.outputs.LightCone.n_slices

property LightCone.n_slices

Number of redshift slices in the lightcone.

py21cmfast.outputs.LightCone.shape

property LightCone.shape

Shape of the lightcone as a 3-tuple.

py21cmfast.outputs.PerturbHaloField

class py21cmfast.outputs.PerturbHaloField(*, astro_params: Optional[AstroParams] = None,
flag_options: Optional[FlagOptions] = None, **kwargs)

A class containing all fields related to halos.

136 Chapter 6. Contents

21cmFAST

Methods

__init__(*[, astro_params, flag_options]) Base type for output structures from C functions.
compute(*, ics, halo_field, hooks) Compute the function.
ensure_arrays_computed(*arrays[, load]) Check if the given arrays are computed (not just ini-

tialized).
ensure_arrays_inited(*arrays[, init]) Check if the given arrays are initialized (or com-

puted).
ensure_input_computed(input_box[, load]) Ensure all the inputs have been computed.
exists([direc]) Return a bool indicating whether a box matching the

parameters of this instance is in cache.
find_existing([direc]) Try to find existing boxes which match the parameters

of this instance.
from_file(fname[, direc, load_data, h5_group]) Create an instance from a file on disk.
get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
get_required_input_arrays(input_box) Return all input arrays required to compute this ob-

ject.
load_all() Load all possible arrays into memory.
prepare([flush, keep, force]) Prepare the instance for being passed to another func-

tion.
purge([force]) Flush all the boxes out of memory.
read([direc, fname, keys]) Try find and read existing boxes from cache, which

match the parameters of this instance.
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
save([fname, direc, h5_group]) Save the box to disk.
summarize([indent]) Generate a string summary of the struct.
write([direc, fname, write_inputs, mode]) Write the struct in standard HDF5 format.
write_data_to_hdf5_group(group) Write out this object to a particular HDF5 subgroup.

py21cmfast.outputs.PerturbHaloField.__init__

PerturbHaloField.__init__(*, astro_params: Optional[AstroParams] = None, flag_options:
Optional[FlagOptions] = None, **kwargs)

Base type for output structures from C functions.

Parameters
• random_seed – Seed associated with the output.

• dummy – Specify this as a dummy struct, in which no arrays are to be initialized or com-
puted.

• initial – Specify this as an initial struct, where arrays are to be initialized, but do not need
to be computed to pass into another struct’s compute().

6.4. API Reference 137

21cmFAST

py21cmfast.outputs.PerturbHaloField.compute

PerturbHaloField.compute(*, ics: InitialConditions, halo_field: HaloField, hooks: dict)
Compute the function.

py21cmfast.outputs.PerturbHaloField.ensure_arrays_computed

PerturbHaloField.ensure_arrays_computed(*arrays, load=False)→ bool
Check if the given arrays are computed (not just initialized).

py21cmfast.outputs.PerturbHaloField.ensure_arrays_inited

PerturbHaloField.ensure_arrays_inited(*arrays, init=False)→ bool
Check if the given arrays are initialized (or computed).

py21cmfast.outputs.PerturbHaloField.ensure_input_computed

PerturbHaloField.ensure_input_computed(input_box, load=False)→ bool
Ensure all the inputs have been computed.

py21cmfast.outputs.PerturbHaloField.exists

PerturbHaloField.exists(direc=None)
Return a bool indicating whether a box matching the parameters of this instance is in cache.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

py21cmfast.outputs.PerturbHaloField.find_existing

PerturbHaloField.find_existing(direc=None)
Try to find existing boxes which match the parameters of this instance.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

Returns
str – The filename of an existing set of boxes, or None.

138 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.PerturbHaloField.from_file

classmethod PerturbHaloField.from_file(fname, direc=None, load_data=True, h5_group:
Optional[str] = None)

Create an instance from a file on disk.

Parameters
• fname (str, optional) – Path to the file on disk. May be relative or absolute.

• direc (str, optional) – The directory from which fname is relative to (if it is relative). By
default, will be the cache directory in config.

• load_data (bool, optional) – Whether to read in the data when creating the instance. If
False, a bare instance is created with input parameters – the instance can read data with the
read() method.

• h5_group – The path to the group within the file in which the object is stored.

py21cmfast.outputs.PerturbHaloField.get_fieldnames

classmethod PerturbHaloField.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.outputs.PerturbHaloField.get_fields

classmethod PerturbHaloField.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.outputs.PerturbHaloField.get_pointer_fields

classmethod PerturbHaloField.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.outputs.PerturbHaloField.get_required_input_arrays

PerturbHaloField.get_required_input_arrays(input_box: OutputStruct)→ list[str]
Return all input arrays required to compute this object.

py21cmfast.outputs.PerturbHaloField.load_all

PerturbHaloField.load_all()

Load all possible arrays into memory.

6.4. API Reference 139

21cmFAST

py21cmfast.outputs.PerturbHaloField.prepare

PerturbHaloField.prepare(flush: Optional[Sequence[str]] = None, keep: Optional[Sequence[str]] =
None, force: bool = False)

Prepare the instance for being passed to another function.

This will flush all arrays in “flush” from memory, and ensure all arrays in “keep” are in memory. At least
one of these must be provided. By default, the complement of the given parameter is all flushed/kept.

Parameters
• flush – Arrays to flush out of memory. Note that if no file is associated with this instance,

these arrays will be lost forever.

• keep – Arrays to keep or load into memory. Note that if these do not already exist, they will
be loaded from file (if the file exists). Only one of flush and keep should be specified.

• force – Whether to force flushing arrays even if no disk storage exists.

py21cmfast.outputs.PerturbHaloField.purge

PerturbHaloField.purge(force=False)
Flush all the boxes out of memory.

Parameters
force – Whether to force the purge even if no disk storage exists.

py21cmfast.outputs.PerturbHaloField.read

PerturbHaloField.read(direc: ~typing.Optional[~typing.Union[str, ~pathlib.Path]] = None, fname:
~typing.Union[str, ~pathlib.Path, None, <MagicMock id='140646866852240'>,
<MagicMock id='140646866860064'>] = None, keys:
~typing.Optional[~typing.Sequence[str]] = None)

Try find and read existing boxes from cache, which match the parameters of this instance.

Parameters
• direc – The directory in which to search for the boxes. By default, this is the centrally-

managed directory, given by the config.yml in ~/.21cmfast/.

• fname – The filename to read. By default, use the filename associated with this object.
Can be an open h5py File or Group, which will be directly written to.

• keys – The names of boxes to read in (can be a subset). By default, read everything.

py21cmfast.outputs.PerturbHaloField.refresh_cstruct

PerturbHaloField.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

140 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.PerturbHaloField.save

PerturbHaloField.save(fname=None, direc='.', h5_group=None)
Save the box to disk.

In detail, this just calls write, but changes the default directory to the local directory. This is more user-
friendly, while write() is for automatic use under-the-hood.

Parameters
• fname (str, optional) – The filename to write. Can be an absolute or relative path. If rel-

ative, by default it is relative to the current directory (otherwise relative to direc). By
default, the filename is auto-generated as unique to the set of parameters that go into pro-
ducing the data.

• direc (str, optional) – The directory into which to write the data. By default the current
directory. Ignored if fname is an absolute path.

py21cmfast.outputs.PerturbHaloField.summarize

PerturbHaloField.summarize(indent=0)→ str
Generate a string summary of the struct.

py21cmfast.outputs.PerturbHaloField.write

PerturbHaloField.write(direc=None, fname: ~typing.Union[str, ~pathlib.Path, None, <MagicMock
id='140646578773808'>, <MagicMock id='140646577199072'>] = None,
write_inputs=True, mode='w')

Write the struct in standard HDF5 format.

Parameters
• direc (str, optional) – The directory in which to write the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast/.

• fname (str, optional) – The filename to write to. By default creates a unique filename from
the hash.

• write_inputs (bool, optional) – Whether to write the inputs to the file. Can be useful to
set to False if the input file already exists and has parts already written.

py21cmfast.outputs.PerturbHaloField.write_data_to_hdf5_group

PerturbHaloField.write_data_to_hdf5_group(group: <MagicMock id='140646866776992'>)
Write out this object to a particular HDF5 subgroup.

Parameters
group – The HDF5 group into which to write the object.

6.4. API Reference 141

21cmFAST

Attributes

fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
filename The base filename of this object.
is_computed Whether this instance has been computed at all.
path The path to an on-disk version of this object.
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
random_seed The random seed for this particular instance.

py21cmfast.outputs.PerturbHaloField.fieldnames

property PerturbHaloField.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.outputs.PerturbHaloField.fields

property PerturbHaloField.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.outputs.PerturbHaloField.filename

property PerturbHaloField.filename

The base filename of this object.

py21cmfast.outputs.PerturbHaloField.is_computed

property PerturbHaloField.is_computed: bool

Whether this instance has been computed at all.

This is true either if the current instance has called compute(), or if it has a current existing path pointing
to stored data, or if such a path exists.

Just because the instance has been computed does not mean that all relevant quantities are available –
some may have been purged from memory without writing. Use has() to check whether certain arrays are
available.

142 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.PerturbHaloField.path

property PerturbHaloField.path: Tuple[None, Path]

The path to an on-disk version of this object.

py21cmfast.outputs.PerturbHaloField.pointer_fields

property PerturbHaloField.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.outputs.PerturbHaloField.primitive_fields

property PerturbHaloField.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.outputs.PerturbHaloField.random_seed

property PerturbHaloField.random_seed

The random seed for this particular instance.

py21cmfast.outputs.PerturbedField

class py21cmfast.outputs.PerturbedField(*, user_params=None, cosmo_params=None, **kwargs)
A class containing all perturbed field boxes.

6.4. API Reference 143

21cmFAST

Methods

__init__(*[, user_params, cosmo_params]) Base type for output structures from C functions.
compute(*, ics, hooks) Compute the function.
ensure_arrays_computed(*arrays[, load]) Check if the given arrays are computed (not just ini-

tialized).
ensure_arrays_inited(*arrays[, init]) Check if the given arrays are initialized (or com-

puted).
ensure_input_computed(input_box[, load]) Ensure all the inputs have been computed.
exists([direc]) Return a bool indicating whether a box matching the

parameters of this instance is in cache.
find_existing([direc]) Try to find existing boxes which match the parameters

of this instance.
from_file(fname[, direc, load_data, h5_group]) Create an instance from a file on disk.
get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
get_required_input_arrays(input_box) Return all input arrays required to compute this ob-

ject.
load_all() Load all possible arrays into memory.
prepare([flush, keep, force]) Prepare the instance for being passed to another func-

tion.
purge([force]) Flush all the boxes out of memory.
read([direc, fname, keys]) Try find and read existing boxes from cache, which

match the parameters of this instance.
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
save([fname, direc, h5_group]) Save the box to disk.
summarize([indent]) Generate a string summary of the struct.
write([direc, fname, write_inputs, mode]) Write the struct in standard HDF5 format.
write_data_to_hdf5_group(group) Write out this object to a particular HDF5 subgroup.

py21cmfast.outputs.PerturbedField.__init__

PerturbedField.__init__(*, user_params=None, cosmo_params=None, **kwargs)
Base type for output structures from C functions.

Parameters
• random_seed – Seed associated with the output.

• dummy – Specify this as a dummy struct, in which no arrays are to be initialized or com-
puted.

• initial – Specify this as an initial struct, where arrays are to be initialized, but do not need
to be computed to pass into another struct’s compute().

144 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.PerturbedField.compute

PerturbedField.compute(*, ics: InitialConditions, hooks: dict)
Compute the function.

py21cmfast.outputs.PerturbedField.ensure_arrays_computed

PerturbedField.ensure_arrays_computed(*arrays, load=False)→ bool
Check if the given arrays are computed (not just initialized).

py21cmfast.outputs.PerturbedField.ensure_arrays_inited

PerturbedField.ensure_arrays_inited(*arrays, init=False)→ bool
Check if the given arrays are initialized (or computed).

py21cmfast.outputs.PerturbedField.ensure_input_computed

PerturbedField.ensure_input_computed(input_box, load=False)→ bool
Ensure all the inputs have been computed.

py21cmfast.outputs.PerturbedField.exists

PerturbedField.exists(direc=None)
Return a bool indicating whether a box matching the parameters of this instance is in cache.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

py21cmfast.outputs.PerturbedField.find_existing

PerturbedField.find_existing(direc=None)
Try to find existing boxes which match the parameters of this instance.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

Returns
str – The filename of an existing set of boxes, or None.

6.4. API Reference 145

21cmFAST

py21cmfast.outputs.PerturbedField.from_file

classmethod PerturbedField.from_file(fname, direc=None, load_data=True, h5_group:
Optional[str] = None)

Create an instance from a file on disk.

Parameters
• fname (str, optional) – Path to the file on disk. May be relative or absolute.

• direc (str, optional) – The directory from which fname is relative to (if it is relative). By
default, will be the cache directory in config.

• load_data (bool, optional) – Whether to read in the data when creating the instance. If
False, a bare instance is created with input parameters – the instance can read data with the
read() method.

• h5_group – The path to the group within the file in which the object is stored.

py21cmfast.outputs.PerturbedField.get_fieldnames

classmethod PerturbedField.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.outputs.PerturbedField.get_fields

classmethod PerturbedField.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.outputs.PerturbedField.get_pointer_fields

classmethod PerturbedField.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.outputs.PerturbedField.get_required_input_arrays

PerturbedField.get_required_input_arrays(input_box: OutputStruct)→ list[str]
Return all input arrays required to compute this object.

py21cmfast.outputs.PerturbedField.load_all

PerturbedField.load_all()

Load all possible arrays into memory.

146 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.PerturbedField.prepare

PerturbedField.prepare(flush: Optional[Sequence[str]] = None, keep: Optional[Sequence[str]] = None,
force: bool = False)

Prepare the instance for being passed to another function.

This will flush all arrays in “flush” from memory, and ensure all arrays in “keep” are in memory. At least
one of these must be provided. By default, the complement of the given parameter is all flushed/kept.

Parameters
• flush – Arrays to flush out of memory. Note that if no file is associated with this instance,

these arrays will be lost forever.

• keep – Arrays to keep or load into memory. Note that if these do not already exist, they will
be loaded from file (if the file exists). Only one of flush and keep should be specified.

• force – Whether to force flushing arrays even if no disk storage exists.

py21cmfast.outputs.PerturbedField.purge

PerturbedField.purge(force=False)
Flush all the boxes out of memory.

Parameters
force – Whether to force the purge even if no disk storage exists.

py21cmfast.outputs.PerturbedField.read

PerturbedField.read(direc: ~typing.Optional[~typing.Union[str, ~pathlib.Path]] = None, fname:
~typing.Union[str, ~pathlib.Path, None, <MagicMock id='140646866852240'>,
<MagicMock id='140646866860064'>] = None, keys:
~typing.Optional[~typing.Sequence[str]] = None)

Try find and read existing boxes from cache, which match the parameters of this instance.

Parameters
• direc – The directory in which to search for the boxes. By default, this is the centrally-

managed directory, given by the config.yml in ~/.21cmfast/.

• fname – The filename to read. By default, use the filename associated with this object.
Can be an open h5py File or Group, which will be directly written to.

• keys – The names of boxes to read in (can be a subset). By default, read everything.

py21cmfast.outputs.PerturbedField.refresh_cstruct

PerturbedField.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

6.4. API Reference 147

21cmFAST

py21cmfast.outputs.PerturbedField.save

PerturbedField.save(fname=None, direc='.', h5_group=None)
Save the box to disk.

In detail, this just calls write, but changes the default directory to the local directory. This is more user-
friendly, while write() is for automatic use under-the-hood.

Parameters
• fname (str, optional) – The filename to write. Can be an absolute or relative path. If rel-

ative, by default it is relative to the current directory (otherwise relative to direc). By
default, the filename is auto-generated as unique to the set of parameters that go into pro-
ducing the data.

• direc (str, optional) – The directory into which to write the data. By default the current
directory. Ignored if fname is an absolute path.

py21cmfast.outputs.PerturbedField.summarize

PerturbedField.summarize(indent=0)→ str
Generate a string summary of the struct.

py21cmfast.outputs.PerturbedField.write

PerturbedField.write(direc=None, fname: ~typing.Union[str, ~pathlib.Path, None, <MagicMock
id='140646578773808'>, <MagicMock id='140646577199072'>] = None,
write_inputs=True, mode='w')

Write the struct in standard HDF5 format.

Parameters
• direc (str, optional) – The directory in which to write the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast/.

• fname (str, optional) – The filename to write to. By default creates a unique filename from
the hash.

• write_inputs (bool, optional) – Whether to write the inputs to the file. Can be useful to
set to False if the input file already exists and has parts already written.

py21cmfast.outputs.PerturbedField.write_data_to_hdf5_group

PerturbedField.write_data_to_hdf5_group(group: <MagicMock id='140646866776992'>)
Write out this object to a particular HDF5 subgroup.

Parameters
group – The HDF5 group into which to write the object.

148 Chapter 6. Contents

21cmFAST

Attributes

fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
filename The base filename of this object.
is_computed Whether this instance has been computed at all.
path The path to an on-disk version of this object.
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
random_seed The random seed for this particular instance.

py21cmfast.outputs.PerturbedField.fieldnames

property PerturbedField.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.outputs.PerturbedField.fields

property PerturbedField.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.outputs.PerturbedField.filename

property PerturbedField.filename

The base filename of this object.

py21cmfast.outputs.PerturbedField.is_computed

property PerturbedField.is_computed: bool

Whether this instance has been computed at all.

This is true either if the current instance has called compute(), or if it has a current existing path pointing
to stored data, or if such a path exists.

Just because the instance has been computed does not mean that all relevant quantities are available –
some may have been purged from memory without writing. Use has() to check whether certain arrays are
available.

6.4. API Reference 149

21cmFAST

py21cmfast.outputs.PerturbedField.path

property PerturbedField.path: Tuple[None, Path]

The path to an on-disk version of this object.

py21cmfast.outputs.PerturbedField.pointer_fields

property PerturbedField.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.outputs.PerturbedField.primitive_fields

property PerturbedField.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.outputs.PerturbedField.random_seed

property PerturbedField.random_seed

The random seed for this particular instance.

py21cmfast.outputs.TsBox

class py21cmfast.outputs.TsBox(*, prev_spin_redshift: Optional[float] = None, perturbed_field_redshift:
Optional[float] = None, **kwargs)

A class containing all spin temperature boxes.

150 Chapter 6. Contents

21cmFAST

Methods

__init__(*[, prev_spin_redshift, ...]) Base type for output structures from C functions.
compute(*, cleanup, perturbed_field, ...) Compute the function.
ensure_arrays_computed(*arrays[, load]) Check if the given arrays are computed (not just ini-

tialized).
ensure_arrays_inited(*arrays[, init]) Check if the given arrays are initialized (or com-

puted).
ensure_input_computed(input_box[, load]) Ensure all the inputs have been computed.
exists([direc]) Return a bool indicating whether a box matching the

parameters of this instance is in cache.
find_existing([direc]) Try to find existing boxes which match the parameters

of this instance.
from_file(fname[, direc, load_data, h5_group]) Create an instance from a file on disk.
get_fieldnames([cstruct]) Obtain the C-side field names of this struct.
get_fields([cstruct]) Obtain the C-side fields of this struct.
get_pointer_fields([cstruct]) Obtain all pointer fields of the struct (typically simu-

lation boxes).
get_required_input_arrays(input_box) Return all input arrays required to compute this ob-

ject.
load_all() Load all possible arrays into memory.
prepare([flush, keep, force]) Prepare the instance for being passed to another func-

tion.
purge([force]) Flush all the boxes out of memory.
read([direc, fname, keys]) Try find and read existing boxes from cache, which

match the parameters of this instance.
refresh_cstruct() Delete the underlying C object, forcing it to be re-

built.
save([fname, direc, h5_group]) Save the box to disk.
summarize([indent]) Generate a string summary of the struct.
write([direc, fname, write_inputs, mode]) Write the struct in standard HDF5 format.
write_data_to_hdf5_group(group) Write out this object to a particular HDF5 subgroup.

py21cmfast.outputs.TsBox.__init__

TsBox.__init__(*, prev_spin_redshift: Optional[float] = None, perturbed_field_redshift: Optional[float] =
None, **kwargs)

Base type for output structures from C functions.

Parameters
• random_seed – Seed associated with the output.

• dummy – Specify this as a dummy struct, in which no arrays are to be initialized or com-
puted.

• initial – Specify this as an initial struct, where arrays are to be initialized, but do not need
to be computed to pass into another struct’s compute().

6.4. API Reference 151

21cmFAST

py21cmfast.outputs.TsBox.compute

TsBox.compute(*, cleanup: bool, perturbed_field: PerturbedField, prev_spin_temp, ics: InitialConditions,
hooks: dict)

Compute the function.

py21cmfast.outputs.TsBox.ensure_arrays_computed

TsBox.ensure_arrays_computed(*arrays, load=False)→ bool
Check if the given arrays are computed (not just initialized).

py21cmfast.outputs.TsBox.ensure_arrays_inited

TsBox.ensure_arrays_inited(*arrays, init=False)→ bool
Check if the given arrays are initialized (or computed).

py21cmfast.outputs.TsBox.ensure_input_computed

TsBox.ensure_input_computed(input_box, load=False)→ bool
Ensure all the inputs have been computed.

py21cmfast.outputs.TsBox.exists

TsBox.exists(direc=None)
Return a bool indicating whether a box matching the parameters of this instance is in cache.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

py21cmfast.outputs.TsBox.find_existing

TsBox.find_existing(direc=None)
Try to find existing boxes which match the parameters of this instance.

Parameters
direc (str, optional) – The directory in which to search for the boxes. By default, this is the
centrally-managed directory, given by the config.yml in ~/.21cmfast/.

Returns
str – The filename of an existing set of boxes, or None.

152 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.TsBox.from_file

classmethod TsBox.from_file(fname, direc=None, load_data=True, h5_group: Optional[str] = None)
Create an instance from a file on disk.

Parameters
• fname (str, optional) – Path to the file on disk. May be relative or absolute.

• direc (str, optional) – The directory from which fname is relative to (if it is relative). By
default, will be the cache directory in config.

• load_data (bool, optional) – Whether to read in the data when creating the instance. If
False, a bare instance is created with input parameters – the instance can read data with the
read() method.

• h5_group – The path to the group within the file in which the object is stored.

py21cmfast.outputs.TsBox.get_fieldnames

classmethod TsBox.get_fieldnames(cstruct=None)→ List[str]
Obtain the C-side field names of this struct.

py21cmfast.outputs.TsBox.get_fields

classmethod TsBox.get_fields(cstruct=None)→ Dict[str, Any]
Obtain the C-side fields of this struct.

py21cmfast.outputs.TsBox.get_pointer_fields

classmethod TsBox.get_pointer_fields(cstruct=None)→ List[str]
Obtain all pointer fields of the struct (typically simulation boxes).

py21cmfast.outputs.TsBox.get_required_input_arrays

TsBox.get_required_input_arrays(input_box: OutputStruct)→ list[str]
Return all input arrays required to compute this object.

py21cmfast.outputs.TsBox.load_all

TsBox.load_all()

Load all possible arrays into memory.

6.4. API Reference 153

21cmFAST

py21cmfast.outputs.TsBox.prepare

TsBox.prepare(flush: Optional[Sequence[str]] = None, keep: Optional[Sequence[str]] = None, force: bool
= False)

Prepare the instance for being passed to another function.

This will flush all arrays in “flush” from memory, and ensure all arrays in “keep” are in memory. At least
one of these must be provided. By default, the complement of the given parameter is all flushed/kept.

Parameters
• flush – Arrays to flush out of memory. Note that if no file is associated with this instance,

these arrays will be lost forever.

• keep – Arrays to keep or load into memory. Note that if these do not already exist, they will
be loaded from file (if the file exists). Only one of flush and keep should be specified.

• force – Whether to force flushing arrays even if no disk storage exists.

py21cmfast.outputs.TsBox.purge

TsBox.purge(force=False)
Flush all the boxes out of memory.

Parameters
force – Whether to force the purge even if no disk storage exists.

py21cmfast.outputs.TsBox.read

TsBox.read(direc: ~typing.Optional[~typing.Union[str, ~pathlib.Path]] = None, fname: ~typing.Union[str,
~pathlib.Path, None, <MagicMock id='140646866852240'>, <MagicMock
id='140646866860064'>] = None, keys: ~typing.Optional[~typing.Sequence[str]] = None)

Try find and read existing boxes from cache, which match the parameters of this instance.

Parameters
• direc – The directory in which to search for the boxes. By default, this is the centrally-

managed directory, given by the config.yml in ~/.21cmfast/.

• fname – The filename to read. By default, use the filename associated with this object.
Can be an open h5py File or Group, which will be directly written to.

• keys – The names of boxes to read in (can be a subset). By default, read everything.

py21cmfast.outputs.TsBox.refresh_cstruct

TsBox.refresh_cstruct()

Delete the underlying C object, forcing it to be rebuilt.

154 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.TsBox.save

TsBox.save(fname=None, direc='.', h5_group=None)
Save the box to disk.

In detail, this just calls write, but changes the default directory to the local directory. This is more user-
friendly, while write() is for automatic use under-the-hood.

Parameters
• fname (str, optional) – The filename to write. Can be an absolute or relative path. If rel-

ative, by default it is relative to the current directory (otherwise relative to direc). By
default, the filename is auto-generated as unique to the set of parameters that go into pro-
ducing the data.

• direc (str, optional) – The directory into which to write the data. By default the current
directory. Ignored if fname is an absolute path.

py21cmfast.outputs.TsBox.summarize

TsBox.summarize(indent=0)→ str
Generate a string summary of the struct.

py21cmfast.outputs.TsBox.write

TsBox.write(direc=None, fname: ~typing.Union[str, ~pathlib.Path, None, <MagicMock
id='140646578773808'>, <MagicMock id='140646577199072'>] = None, write_inputs=True,
mode='w')

Write the struct in standard HDF5 format.

Parameters
• direc (str, optional) – The directory in which to write the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast/.

• fname (str, optional) – The filename to write to. By default creates a unique filename from
the hash.

• write_inputs (bool, optional) – Whether to write the inputs to the file. Can be useful to
set to False if the input file already exists and has parts already written.

py21cmfast.outputs.TsBox.write_data_to_hdf5_group

TsBox.write_data_to_hdf5_group(group: <MagicMock id='140646866776992'>)
Write out this object to a particular HDF5 subgroup.

Parameters
group – The HDF5 group into which to write the object.

6.4. API Reference 155

21cmFAST

Attributes

fieldnames List names of fields of the underlying C struct.
fields List of fields of the underlying C struct (a list of tuples

of "name, type").
filename The base filename of this object.
global_Tk

global_Ts

global_x_e

is_computed Whether this instance has been computed at all.
path The path to an on-disk version of this object.
pointer_fields List of names of fields which have pointer type in the

C struct.
primitive_fields List of names of fields which have primitive type in

the C struct.
random_seed The random seed for this particular instance.

py21cmfast.outputs.TsBox.fieldnames

property TsBox.fieldnames: List[str]

List names of fields of the underlying C struct.

py21cmfast.outputs.TsBox.fields

property TsBox.fields: Dict[str, Any]

List of fields of the underlying C struct (a list of tuples of “name, type”).

py21cmfast.outputs.TsBox.filename

property TsBox.filename

The base filename of this object.

py21cmfast.outputs.TsBox.global_Tk

TsBox.global_Tk = <MagicMock name='mock()' id='140646573235152'>

156 Chapter 6. Contents

21cmFAST

py21cmfast.outputs.TsBox.global_Ts

TsBox.global_Ts = <MagicMock name='mock()' id='140646573235152'>

py21cmfast.outputs.TsBox.global_x_e

TsBox.global_x_e = <MagicMock name='mock()' id='140646573235152'>

py21cmfast.outputs.TsBox.is_computed

property TsBox.is_computed: bool

Whether this instance has been computed at all.

This is true either if the current instance has called compute(), or if it has a current existing path pointing
to stored data, or if such a path exists.

Just because the instance has been computed does not mean that all relevant quantities are available –
some may have been purged from memory without writing. Use has() to check whether certain arrays are
available.

py21cmfast.outputs.TsBox.path

property TsBox.path: Tuple[None, Path]

The path to an on-disk version of this object.

py21cmfast.outputs.TsBox.pointer_fields

property TsBox.pointer_fields: List[str]

List of names of fields which have pointer type in the C struct.

py21cmfast.outputs.TsBox.primitive_fields

property TsBox.primitive_fields: List[str]

List of names of fields which have primitive type in the C struct.

py21cmfast.outputs.TsBox.random_seed

property TsBox.random_seed

The random seed for this particular instance.

6.4. API Reference 157

21cmFAST

py21cmfast.wrapper

The main wrapper for the underlying 21cmFAST C-code.

The module provides both low- and high-level wrappers, using the very low-level machinery in _utils, and the con-
venient input and output structures from inputs and outputs.

This module provides a number of:

• Low-level functions which simplify calling the background C functions which populate these output objects
given the input classes.

• High-level functions which provide the most efficient and simplest way to generate the most commonly desired
outputs.

Low-level functions
The low-level functions provided here ease the production of the aforementioned output objects. Functions ex-
ist for each low-level C routine, which have been decoupled as far as possible. So, functions exist to create
initial_conditions(), perturb_field(), ionize_box and so on. Creating a brightness temperature box (often
the desired final output) would generally require calling each of these in turn, as each depends on the result of a previous
function. Nevertheless, each function has the capability of generating the required previous outputs on-the-fly, so one
can instantly call ionize_box() and get a self-consistent result. Doing so, while convenient, is sometimes not effi-
cient, especially when using inhomogeneous recombinations or the spin temperature field, which intrinsically require
consistent evolution of the ionization field through redshift. In these cases, for best efficiency it is recommended to
either use a customised manual approach to calling these low-level functions, or to call a higher-level function which
optimizes this process.

Finally, note that py21cmfast attempts to optimize the production of the large amount of data via on-disk caching.
By default, if a previous set of data has been computed using the current input parameters, it will be read-in from a
caching repository and returned directly. This behaviour can be tuned in any of the low-level (or high-level) functions
by setting the write, direc, regenerate and match_seed parameters (see docs for initial_conditions() for details).
The function query_cache() can be used to search the cache, and return empty datasets corresponding to each (and
these can then be filled with the data merely by calling .read() on any data set). Conversely, a specific data set can
be read and returned as a proper output object by calling the readbox() function.

High-level functions
As previously mentioned, calling the low-level functions in some cases is non-optimal, especially when full evolution
of the field is required, and thus iteration through a series of redshift. In addition, while InitialConditions and
PerturbedField are necessary intermediate data, it is usually the resulting brightness temperature which is of most
interest, and it is easier to not have to worry about the intermediate steps explicitly. For these typical use-cases, two
high-level functions are available: run_coeval() and run_lightcone(), whose purpose should be self-explanatory.
These will optimally run all necessary intermediate steps (using cached results by default if possible) and return all
datasets of interest.

Examples

A typical example of using this module would be the following.

>>> import py21cmfast as p21

Get coeval cubes at redshift 7,8 and 9, without spin temperature or inhomogeneous recombinations:

>>> coeval = p21.run_coeval(
>>> redshift=[7,8,9],
>>> cosmo_params=p21.CosmoParams(hlittle=0.7),

(continues on next page)

158 Chapter 6. Contents

21cmFAST

(continued from previous page)

>>> user_params=p21.UserParams(HII_DIM=100)
>>>)

Get coeval cubes at the same redshift, with both spin temperature and inhomogeneous recombinations, pulled from the
natural evolution of the fields:

>>> all_boxes = p21.run_coeval(
>>> redshift=[7,8,9],
>>> user_params=p21.UserParams(HII_DIM=100),
>>> flag_options=p21.FlagOptions(INHOMO_RECO=True),
>>> do_spin_temp=True
>>>)

Get a self-consistent lightcone defined between z1 and z2 (z_step_factor changes the logarithmic steps between redshift
that are actually evaluated, which are then interpolated onto the lightcone cells):

>>> lightcone = p21.run_lightcone(redshift=z2, max_redshift=z2, z_step_factor=1.03)

Functions

brightness_temperature(*, ionized_box, ...) Compute a coeval brightness temperature box.
calibrate_photon_cons(user_params, ...) Set up the photon non-conservation correction.
compute_luminosity_function(*, redshifts[, ...]) Compute a the luminosity function over a given number

of bins and redshifts.
compute_tau(*, redshifts, global_xHI[, ...]) Compute the optical depth to reionization under the

given model.
configure_redshift(redshift, *structs) Check and obtain a redshift from given default and

structs.
construct_fftw_wisdoms(*[, user_params, ...]) Construct all necessary FFTW wisdoms.
determine_halo_list(*, redshift[, ...]) Find a halo list, given a redshift.
get_all_fieldnames([arrays_only, ...]) Return all possible fieldnames in output structs.
initial_conditions(*[, user_params, ...]) Compute initial conditions.
ionize_box(*[, astro_params, flag_options, ...]) Compute an ionized box at a given redshift.
perturb_field(*, redshift[, init_boxes, ...]) Compute a perturbed field at a given redshift.
perturb_halo_list(*, redshift[, init_boxes, ...]) Given a halo list, perturb the halos for a given redshift.
run_coeval(*[, redshift, user_params, ...]) Evaluate a coeval ionized box at a given redshift, or mul-

tiple redshifts.
run_lightcone(*[, redshift, max_redshift, ...]) Evaluate a full lightcone ending at a given redshift.
spin_temperature(*[, astro_params, ...]) Compute spin temperature boxes at a given redshift.

py21cmfast.wrapper.brightness_temperature

py21cmfast.wrapper.brightness_temperature(*, ionized_box, perturbed_field, spin_temp=None,
write=None, regenerate=None, direc=None, hooks=None,
**global_kwargs)→ BrightnessTemp

Compute a coeval brightness temperature box.

Parameters
• ionized_box (IonizedBox) – A pre-computed ionized box.

6.4. API Reference 159

21cmFAST

• perturbed_field (PerturbedField) – A pre-computed perturbed field at the same redshift
as ionized_box.

• spin_temp (TsBox, optional) – A pre-computed spin temperature, at the same redshift as the
other boxes.

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Returns
BrightnessTemp instance.

py21cmfast.wrapper.calibrate_photon_cons

py21cmfast.wrapper.calibrate_photon_cons(user_params, cosmo_params, astro_params, flag_options,
init_box, regenerate, write, direc, **global_kwargs)

Set up the photon non-conservation correction.

Scrolls through in redshift, turning off all flag_options to construct a 21cmFAST calibration reionisation history
to be matched to the analytic expression from solving the filling factor ODE.

Parameters
• user_params (~UserParams, optional) – Defines the overall options and parameters of the

run.

• astro_params (AstroParams, optional) – Defines the astrophysical parameters of the run.

• cosmo_params (CosmoParams, optional) – Defines the cosmological parameters used to
compute initial conditions.

• flag_options (FlagOptions, optional) – Options concerning how the reionization process
is run, eg. if spin temperature fluctuations are required.

• init_box (InitialConditions, optional) – If given, the user and cosmo params will be set
from this object, and it will not be re-calculated.

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Other Parameters
regenerate, write – See docs of initial_conditions() for more information.

py21cmfast.wrapper.compute_luminosity_function

py21cmfast.wrapper.compute_luminosity_function(*, redshifts, user_params=None,
cosmo_params=None, astro_params=None,
flag_options=None, nbins=100, mturnovers=None,
mturnovers_mini=None, component=0)

Compute a the luminosity function over a given number of bins and redshifts.

Parameters
• redshifts (array-like) – The redshifts at which to compute the luminosity function.

• user_params (UserParams, optional) – Defines the overall options and parameters of the
run.

160 Chapter 6. Contents

21cmFAST

• cosmo_params (CosmoParams, optional) – Defines the cosmological parameters used to
compute initial conditions.

• astro_params (AstroParams, optional) – The astrophysical parameters defining the course
of reionization.

• flag_options (FlagOptions, optional) – Some options passed to the reionization routine.

• nbins (int, optional) – The number of luminosity bins to produce for the luminosity function.

• mturnovers (array-like, optional) – The turnover mass at each redshift for massive halos
(ACGs). Only required when USE_MINI_HALOS is True.

• mturnovers_mini (array-like, optional) – The turnover mass at each redshift for minihalos
(MCGs). Only required when USE_MINI_HALOS is True.

• component (int, optional) – The component of the LF to be calculated. 0, 1 an 2 are
for the total, ACG and MCG LFs respectively, requiring inputs of both mturnovers and
mturnovers_MINI (0), only mturnovers (1) or mturnovers_MINI (2).

Returns
• Muvfunc (np.ndarray) – Magnitude array (i.e. brightness). Shape [nredshifts, nbins]

• Mhfunc (np.ndarray) – Halo mass array. Shape [nredshifts, nbins]

• lfunc (np.ndarray) – Number density of haloes corresponding to each bin defined by Muv-
func. Shape [nredshifts, nbins].

py21cmfast.wrapper.compute_tau

py21cmfast.wrapper.compute_tau(*, redshifts, global_xHI, user_params=None, cosmo_params=None)
Compute the optical depth to reionization under the given model.

Parameters
• redshifts (array-like) – Redshifts defining an evolution of the neutral fraction.

• global_xHI (array-like) – The mean neutral fraction at redshifts.

• user_params (UserParams) – Parameters defining the simulation run.

• cosmo_params (CosmoParams) – Cosmological parameters.

Returns
tau (float) – The optional depth to reionization

Raises
ValueError : – If redshifts and global_xHI have inconsistent length or if redshifts are not in
ascending order.

6.4. API Reference 161

21cmFAST

py21cmfast.wrapper.configure_redshift

py21cmfast.wrapper.configure_redshift(redshift, *structs)
Check and obtain a redshift from given default and structs.

Parameters
• redshift (float) – The default redshift to use

• structs (list of OutputStruct) – A number of output datasets from which to find the red-
shift.

Raises
ValueError : – If both redshift and all structs have a value of None, or if any of them are
different from each other (and not None).

py21cmfast.wrapper.construct_fftw_wisdoms

py21cmfast.wrapper.construct_fftw_wisdoms(*, user_params=None, cosmo_params=None)
Construct all necessary FFTW wisdoms.

Parameters
user_params (UserParams) – Parameters defining the simulation run.

py21cmfast.wrapper.determine_halo_list

py21cmfast.wrapper.determine_halo_list(*, redshift, init_boxes=None, user_params=None,
cosmo_params=None, astro_params=None, flag_options=None,
random_seed=None, regenerate=None, write=None, direc=None,
hooks=None, **global_kwargs)

Find a halo list, given a redshift.

Parameters
• redshift (float) – The redshift at which to determine the halo list.

• init_boxes (InitialConditions, optional) – If given, these initial conditions boxes will
be used, otherwise initial conditions will be generated. If given, the user and cosmo params
will be set from this object.

• user_params (UserParams, optional) – Defines the overall options and parameters of the
run.

• cosmo_params (CosmoParams, optional) – Defines the cosmological parameters used to
compute initial conditions.

• astro_params (AstroParams instance, optional) – The astrophysical parameters defining
the course of reionization.

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Returns
HaloField

162 Chapter 6. Contents

21cmFAST

Other Parameters
regenerate, write, direc, random_seed – See docs of initial_conditions() for more infor-
mation.

Examples

Fill this in once finalised

py21cmfast.wrapper.get_all_fieldnames

py21cmfast.wrapper.get_all_fieldnames(arrays_only=True, lightcone_only=False, as_dict=False)→
dict[str, str] | set[str]

Return all possible fieldnames in output structs.

Parameters
• arrays_only (bool, optional) – Whether to only return fields that are arrays.

• lightcone_only (bool, optional) – Whether to only return fields from classes that evolve with
redshift.

• as_dict (bool, optional) – Whether to return results as a dictionary of quantity:
class_name. Otherwise returns a set of quantities.

py21cmfast.wrapper.initial_conditions

py21cmfast.wrapper.initial_conditions(*, user_params=None, cosmo_params=None,
random_seed=None, regenerate=None, write=None, direc=None,
hooks: Optional[dict[Callable, dict[str, Any]]] = None,
**global_kwargs)→ InitialConditions

Compute initial conditions.

Parameters
• user_params (UserParams instance, optional) – Defines the overall options and parameters

of the run.

• cosmo_params (CosmoParams instance, optional) – Defines the cosmological parameters
used to compute initial conditions.

• regenerate (bool, optional) – Whether to force regeneration of data, even if matching cached
data is found. This is applied recursively to any potential sub-calculations. It is ignored in
the case of dependent data only if that data is explicitly passed to the function.

• write (bool, optional) – Whether to write results to file (i.e. cache). This is recursively
applied to any potential sub-calculations.

• hooks – Any extra functions to apply to the output object. This should be a dictionary where
the keys are the functions, and the values are themselves dictionaries of parameters to pass to
the function. The function signature should be (output, **params), where the output
is the output object.

• direc (str, optional) – The directory in which to search for the boxes and write them. By de-
fault, this is the directory given by boxdir in the configuration file, ~/.21cmfast/config.
yml. This is recursively applied to any potential sub-calculations.

6.4. API Reference 163

21cmFAST

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Returns
InitialConditions

py21cmfast.wrapper.ionize_box

py21cmfast.wrapper.ionize_box(*, astro_params=None, flag_options=None, redshift=None,
perturbed_field=None, previous_perturbed_field=None,
previous_ionize_box=None, spin_temp=None, pt_halos=None,
init_boxes=None, cosmo_params=None, user_params=None,
regenerate=None, write=None, direc=None, random_seed=None,
cleanup=True, hooks=None, **global_kwargs)→ IonizedBox

Compute an ionized box at a given redshift.

This function has various options for how the evolution of the ionization is computed (if at all). See the Notes
below for details.

Parameters
• astro_params (AstroParams instance, optional) – The astrophysical parameters defining

the course of reionization.

• flag_options (FlagOptions instance, optional) – Some options passed to the reionization
routine.

• redshift (float, optional) – The redshift at which to compute the ionized box. If per-
turbed_field is given, its inherent redshift will take precedence over this argument. If not,
this argument is mandatory.

• perturbed_field (PerturbField, optional) – If given, this field will be used, otherwise
it will be generated. To be generated, either init_boxes and redshift must be given, or
user_params, cosmo_params and redshift.

• previous_perturbed_field (PerturbField, optional) – An perturbed field at higher red-
shift. This is only used if mini_halo is included.

• init_boxes (InitialConditions , optional) – If given, and perturbed_field not given, these
initial conditions boxes will be used to generate the perturbed field, otherwise initial condi-
tions will be generated on the fly. If given, the user and cosmo params will be set from this
object.

• previous_ionize_box (IonizedBox or None) – An ionized box at higher redshift. This is
only used if INHOMO_RECO and/or do_spin_temp are true. If either of these are true, and
this is not given, then it will be assumed that this is the “first box”, i.e. that it can be populated
accurately without knowing source statistics.

• spin_temp (TsBox or None, optional) – A spin-temperature box, only required if
do_spin_temp is True. If None, will try to read in a spin temp box at the current redshift,
and failing that will try to automatically create one, using the previous ionized box redshift
as the previous spin temperature redshift.

• pt_halos (PerturbHaloField or None, optional) – If passed, this contains all the dark
matter haloes obtained if using the USE_HALO_FIELD. This is a list of halo masses and
coords for the dark matter haloes. If not passed, it will try and automatically create them
using the available initial conditions.

164 Chapter 6. Contents

21cmFAST

• user_params (UserParams, optional) – Defines the overall options and parameters of the
run.

• cosmo_params (CosmoParams, optional) – Defines the cosmological parameters used to
compute initial conditions.

• cleanup (bool, optional) – A flag to specify whether the C routine cleans up its memory
before returning. Typically, if spin_temperature is called directly, you will want this to be
true, as if the next box to be calculate has different shape, errors will occur if memory is not
cleaned. However, it can be useful to set it to False if scrolling through parameters for the
same box shape.

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Returns
IonizedBox – An object containing the ionized box data.

Other Parameters
regenerate, write, direc, random_seed – See docs of initial_conditions() for more infor-
mation.

Notes

Typically, the ionization field at any redshift is dependent on the evolution of xHI up until that redshift, which
necessitates providing a previous ionization field to define the current one. This function provides several options
for doing so. First, if neither the spin temperature field, nor inhomogeneous recombinations (specified in flag
options) are used, no evolution needs to be done. Otherwise, either (in order of precedence)

1. a specific previous :class`~IonizedBox` object is provided, which will be used directly,

2. a previous redshift is provided, for which a cached field on disk will be sought,

3. a step factor is provided which recursively steps through redshift, calculating previous fields up until
Z_HEAT_MAX, and returning just the final field at the current redshift, or

4. the function is instructed to treat the current field as being an initial “high-redshift” field such that specific
sources need not be found and evolved.

Note: If a previous specific redshift is given, but no cached field is found at that redshift, the previous ionization
field will be evaluated based on z_step_factor.

Examples

By default, no spin temperature is used, and neither are inhomogeneous recombinations, so that no evolution is
required, thus the following will compute a coeval ionization box:

>>> xHI = ionize_box(redshift=7.0)

However, if either of those options are true, then a full evolution will be required:

>>> xHI = ionize_box(redshift=7.0, flag_options=FlagOptions(INHOMO_RECO=True,USE_TS_
→˓FLUCT=True))

6.4. API Reference 165

21cmFAST

This will by default evolve the field from a redshift of at least Z_HEAT_MAX (a global parameter), in logarithmic
steps of ZPRIME_STEP_FACTOR. To change these:

>>> xHI = ionize_box(redshift=7.0, zprime_step_factor=1.2, z_heat_max=15.0,
>>> flag_options={"USE_TS_FLUCT":True})

Alternatively, one can pass an exact previous redshift, which will be sought in the disk cache, or evaluated:

>>> ts_box = ionize_box(redshift=7.0, previous_ionize_box=8.0, flag_options={
>>> "USE_TS_FLUCT":True})

Beware that doing this, if the previous box is not found on disk, will continue to evaluate prior boxes based on
ZPRIME_STEP_FACTOR. Alternatively, one can pass a previous IonizedBox:

>>> xHI_0 = ionize_box(redshift=8.0, flag_options={"USE_TS_FLUCT":True})
>>> xHI = ionize_box(redshift=7.0, previous_ionize_box=xHI_0)

Again, the first line here will implicitly use ZPRIME_STEP_FACTOR to evolve the field from Z_HEAT_MAX. Note
that in the second line, all of the input parameters are taken directly from xHI_0 so that they are consistent, and
we need not specify the flag_options.

As the function recursively evaluates previous redshift, the previous spin temperature fields will also be consis-
tently recursively evaluated. Only the final ionized box will actually be returned and kept in memory, however
intervening results will by default be cached on disk. One can also pass an explicit spin temperature object:

>>> ts = spin_temperature(redshift=7.0)
>>> xHI = ionize_box(redshift=7.0, spin_temp=ts)

If automatic recursion is used, then it is done in such a way that no large boxes are kept around in memory for
longer than they need to be (only two at a time are required).

py21cmfast.wrapper.perturb_field

py21cmfast.wrapper.perturb_field(*, redshift, init_boxes=None, user_params=None, cosmo_params=None,
random_seed=None, regenerate=None, write=None, direc=None, hooks:
Optional[dict[Callable, dict[str, Any]]] = None, **global_kwargs)→
PerturbedField

Compute a perturbed field at a given redshift.

Parameters
• redshift (float) – The redshift at which to compute the perturbed field.

• init_boxes (InitialConditions, optional) – If given, these initial conditions boxes will
be used, otherwise initial conditions will be generated. If given, the user and cosmo params
will be set from this object.

• user_params (UserParams, optional) – Defines the overall options and parameters of the
run.

• cosmo_params (CosmoParams, optional) – Defines the cosmological parameters used to
compute initial conditions.

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

166 Chapter 6. Contents

21cmFAST

Returns
PerturbedField

Other Parameters
regenerate, write, direc, random_seed – See docs of initial_conditions() for more infor-
mation.

Examples

The simplest method is just to give a redshift:

>>> field = perturb_field(7.0)
>>> print(field.density)

Doing so will internally call the initial_conditions() function. If initial conditions have already been
calculated, this can be avoided by passing them:

>>> init_boxes = initial_conditions()
>>> field7 = perturb_field(7.0, init_boxes)
>>> field8 = perturb_field(8.0, init_boxes)

The user and cosmo parameter structures are by default inferred from the init_boxes, so that the following is
consistent:

>>> init_boxes = initial_conditions(user_params= UserParams(HII_DIM=1000))
>>> field7 = perturb_field(7.0, init_boxes)

If init_boxes is not passed, then these parameters can be directly passed:

>>> field7 = perturb_field(7.0, user_params=UserParams(HII_DIM=1000))

py21cmfast.wrapper.perturb_halo_list

py21cmfast.wrapper.perturb_halo_list(*, redshift, init_boxes=None, halo_field=None, user_params=None,
cosmo_params=None, astro_params=None, flag_options=None,
random_seed=None, regenerate=None, write=None, direc=None,
hooks=None, **global_kwargs)

Given a halo list, perturb the halos for a given redshift.

Parameters
• redshift (float) – The redshift at which to determine the halo list.

• init_boxes (InitialConditions, optional) – If given, these initial conditions boxes will
be used, otherwise initial conditions will be generated. If given, the user and cosmo params
will be set from this object.

• user_params (UserParams, optional) – Defines the overall options and parameters of the
run.

• cosmo_params (CosmoParams, optional) – Defines the cosmological parameters used to
compute initial conditions.

• astro_params (AstroParams instance, optional) – The astrophysical parameters defining
the course of reionization.

6.4. API Reference 167

21cmFAST

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Returns
PerturbHaloField

Other Parameters
regenerate, write, direc, random_seed – See docs of initial_conditions() for more infor-
mation.

Examples

Fill this in once finalised

py21cmfast.wrapper.run_coeval

py21cmfast.wrapper.run_coeval(*, redshift=None, user_params=None, cosmo_params=None,
astro_params=None, flag_options=None, regenerate=None, write=None,
direc=None, init_box=None, perturb=None, use_interp_perturb_field=False,
pt_halos=None, random_seed=None, cleanup=True, hooks=None,
always_purge: bool = False, **global_kwargs)

Evaluate a coeval ionized box at a given redshift, or multiple redshifts.

This is generally the easiest and most efficient way to generate a set of coeval cubes at a given set of redshift.
It self-consistently deals with situations in which the field needs to be evolved, and does this with the highest
memory-efficiency, only returning the desired redshift. All other calculations are by default stored in the on-disk
cache so they can be re-used at a later time.

Note: User-supplied redshift are not used as previous redshift in any scrolling, so that pristine log-sampling can
be maintained.

Parameters
• redshift (array_like) – A single redshift, or multiple redshift, at which to return results. The

minimum of these will define the log-scrolling behaviour (if necessary).

• user_params (UserParams, optional) – Defines the overall options and parameters of the
run.

• cosmo_params (CosmoParams , optional) – Defines the cosmological parameters used to
compute initial conditions.

• astro_params (AstroParams , optional) – The astrophysical parameters defining the course
of reionization.

• flag_options (FlagOptions , optional) – Some options passed to the reionization routine.

• init_box (InitialConditions, optional) – If given, the user and cosmo params will be set
from this object, and it will not be re-calculated.

• perturb (list of PerturbedField, optional) – If given, must be compatible with init_box.
It will merely negate the necessity of re-calculating the perturb fields.

168 Chapter 6. Contents

21cmFAST

• use_interp_perturb_field (bool, optional) – Whether to use a single perturb field, at the
lowest redshift of the lightcone, to determine all spin temperature fields. If so, this field is
interpolated in the underlying C-code to the correct redshift. This is less accurate (and no
more efficient), but provides compatibility with older versions of 21cmFAST.

• pt_halos (bool, optional) – If given, must be compatible with init_box. It will merely negate
the necessity of re-calculating the perturbed halo lists.

• cleanup (bool, optional) – A flag to specify whether the C routine cleans up its memory
before returning. Typically, if spin_temperature is called directly, you will want this to be
true, as if the next box to be calculate has different shape, errors will occur if memory is not
cleaned. Note that internally, this is set to False until the last iteration.

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Returns
coevals (Coeval) – The full data for the Coeval class, with init boxes, perturbed fields, ionized
boxes, brightness temperature, and potential data from the conservation of photons. If a single
redshift was specified, it will return such a class. If multiple redshifts were passed, it will return
a list of such classes.

Other Parameters
regenerate, write, direc, random_seed – See docs of initial_conditions() for more infor-
mation.

py21cmfast.wrapper.run_lightcone

py21cmfast.wrapper.run_lightcone(*, redshift=None, max_redshift=None, user_params=None,
cosmo_params=None, astro_params=None, flag_options=None,
regenerate=None, write=None,
lightcone_quantities=('brightness_temp',),
global_quantities=('brightness_temp', 'xH_box'), direc=None,
init_box=None, perturb=None, random_seed=None,
coeval_callback=None, coeval_callback_redshifts=1,
use_interp_perturb_field=False, cleanup=True, hooks=None,
always_purge: bool = False, **global_kwargs)

Evaluate a full lightcone ending at a given redshift.

This is generally the easiest and most efficient way to generate a lightcone, though it can be done manually by
using the lower-level functions which are called by this function.

Parameters
• redshift (float) – The minimum redshift of the lightcone.

• max_redshift (float, optional) – The maximum redshift at which to keep lightcone informa-
tion. By default, this is equal to z_heat_max. Note that this is not exact, but will be typically
slightly exceeded.

• user_params (~UserParams, optional) – Defines the overall options and parameters of the
run.

• astro_params (AstroParams, optional) – Defines the astrophysical parameters of the run.

• cosmo_params (CosmoParams, optional) – Defines the cosmological parameters used to
compute initial conditions.

6.4. API Reference 169

21cmFAST

• flag_options (FlagOptions, optional) – Options concerning how the reionization process
is run, eg. if spin temperature fluctuations are required.

• lightcone_quantities (tuple of str, optional) – The quantities to form into a lightcone. By
default, just the brightness temperature. Note that these quantities must exist in one of the
output structures:

– InitialConditions

– PerturbField

– TsBox

– IonizedBox

– BrightnessTemp

To get a full list of possible quantities, run get_all_fieldnames().

• global_quantities (tuple of str, optional) – The quantities to save as globally-averaged
redshift-dependent functions. These may be any of the quantities that can be used in
lightcone_quantities. The mean is taken over the full 3D cube at each redshift, rather
than a 2D slice.

• init_box (InitialConditions, optional) – If given, the user and cosmo params will be set
from this object, and it will not be re-calculated.

• perturb (list of PerturbedField, optional) – If given, must be compatible with init_box.
It will merely negate the necessity of re-calculating the perturb fields. It will also be used to
set the redshift if given.

• coeval_callback (callable, optional) – User-defined arbitrary function computed on Coeval,
at redshifts defined in coeval_callback_redshifts. If given, the function returns LightCone
and the list of coeval_callback outputs.

• coeval_callback_redshifts (list or int, optional) – Redshifts for coeval_callback computa-
tion. If list, computes the function on node_redshifts closest to the specified ones. If positive
integer, computes the function on every n-th redshift in node_redshifts. Ignored in the case
coeval_callback is None.

• use_interp_perturb_field (bool, optional) – Whether to use a single perturb field, at the
lowest redshift of the lightcone, to determine all spin temperature fields. If so, this field is
interpolated in the underlying C-code to the correct redshift. This is less accurate (and no
more efficient), but provides compatibility with older versions of 21cmFAST.

• cleanup (bool, optional) – A flag to specify whether the C routine cleans up its memory
before returning. Typically, if spin_temperature is called directly, you will want this to be
true, as if the next box to be calculate has different shape, errors will occur if memory is not
cleaned. Note that internally, this is set to False until the last iteration.

• minimize_memory_usage – If switched on, the routine will do all it can to minimize peak
memory usage. This will be at the cost of disk I/O and CPU time. Recommended to only set
this if you are running particularly large boxes, or have low RAM.

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Returns
• lightcone (LightCone) – The lightcone object.

• coeval_callback_output (list) – Only if coeval_callback in not None.

170 Chapter 6. Contents

21cmFAST

Other Parameters
regenerate, write, direc, random_seed – See docs of initial_conditions() for more infor-
mation.

py21cmfast.wrapper.spin_temperature

py21cmfast.wrapper.spin_temperature(*, astro_params=None, flag_options=None, redshift=None,
perturbed_field=None, previous_spin_temp=None, init_boxes=None,
cosmo_params=None, user_params=None, regenerate=None,
write=None, direc=None, random_seed=None, cleanup=True,
hooks=None, **global_kwargs)→ TsBox

Compute spin temperature boxes at a given redshift.

See the notes below for how the spin temperature field is evolved through redshift.

Parameters
• astro_params (AstroParams, optional) – The astrophysical parameters defining the course

of reionization.

• flag_options (FlagOptions, optional) – Some options passed to the reionization routine.

• redshift (float, optional) – The redshift at which to compute the ionized box. If not given,
the redshift from perturbed_field will be used. Either redshift, perturbed_field, or previ-
ous_spin_temp must be given. See notes on perturbed_field for how it affects the given
redshift if both are given.

• perturbed_field (PerturbField, optional) – If given, this field will be used, otherwise
it will be generated. To be generated, either init_boxes and redshift must be given, or
user_params, cosmo_params and redshift. By default, this will be generated at the same
redshift as the spin temperature box. The redshift of perturb field is allowed to be different
than redshift. If so, it will be interpolated to the correct redshift, which can provide a speedup
compared to actually computing it at the desired redshift.

• previous_spin_temp (TsBox or None) – The previous spin temperature box.

• init_boxes (InitialConditions, optional) – If given, and perturbed_field not given, these
initial conditions boxes will be used to generate the perturbed field, otherwise initial condi-
tions will be generated on the fly. If given, the user and cosmo params will be set from this
object.

• user_params (UserParams, optional) – Defines the overall options and parameters of the
run.

• cosmo_params (CosmoParams, optional) – Defines the cosmological parameters used to
compute initial conditions.

• cleanup (bool, optional) – A flag to specify whether the C routine cleans up its memory
before returning. Typically, if spin_temperature is called directly, you will want this to be
true, as if the next box to be calculate has different shape, errors will occur if memory is not
cleaned. However, it can be useful to set it to False if scrolling through parameters for the
same box shape.

• **global_kwargs – Any attributes for GlobalParams. This will temporarily set global
attributes for the duration of the function. Note that arguments will be treated as case-
insensitive.

Returns
TsBox – An object containing the spin temperature box data.

6.4. API Reference 171

21cmFAST

Other Parameters
regenerate, write, direc, random_seed – See docs of initial_conditions() for more infor-
mation.

Notes

Typically, the spin temperature field at any redshift is dependent on the evolution of spin temperature up until that
redshift, which necessitates providing a previous spin temperature field to define the current one. This function
provides several options for doing so. Either (in order of precedence):

1. a specific previous spin temperature object is provided, which will be used directly,

2. a previous redshift is provided, for which a cached field on disk will be sought,

3. a step factor is provided which recursively steps through redshift, calculating previous fields up until
Z_HEAT_MAX, and returning just the final field at the current redshift, or

4. the function is instructed to treat the current field as being an initial “high-redshift” field such that specific
sources need not be found and evolved.

Note: If a previous specific redshift is given, but no cached field is found at that redshift, the previous spin
temperature field will be evaluated based on z_step_factor.

Examples

To calculate and return a fully evolved spin temperature field at a given redshift (with default input parameters),
simply use:

>>> ts_box = spin_temperature(redshift=7.0)

This will by default evolve the field from a redshift of at least Z_HEAT_MAX (a global parameter), in logarithmic
steps of z_step_factor. Thus to change these:

>>> ts_box = spin_temperature(redshift=7.0, zprime_step_factor=1.2, z_heat_max=15.0)

Alternatively, one can pass an exact previous redshift, which will be sought in the disk cache, or evaluated:

>>> ts_box = spin_temperature(redshift=7.0, previous_spin_temp=8.0)

Beware that doing this, if the previous box is not found on disk, will continue to evaluate prior boxes based on
the z_step_factor. Alternatively, one can pass a previous spin temperature box:

>>> ts_box1 = spin_temperature(redshift=8.0)
>>> ts_box = spin_temperature(redshift=7.0, previous_spin_temp=ts_box1)

Again, the first line here will implicitly use z_step_factor to evolve the field from around Z_HEAT_MAX. Note
that in the second line, all of the input parameters are taken directly from ts_box1 so that they are consistent.
Finally, one can force the function to evaluate the current redshift as if it was beyond Z_HEAT_MAX so that it
depends only on itself:

>>> ts_box = spin_temperature(redshift=7.0, zprime_step_factor=None)

This is usually a bad idea, and will give a warning, but it is possible.

172 Chapter 6. Contents

21cmFAST

py21cmfast.plotting

Simple plotting functions for 21cmFAST objects.

Functions

coeval_sliceplot(struct[, kind, cbar_label]) Show a slice of a given coeval box.
lightcone_sliceplot(lightcone[, kind, ...]) Create a 2D plot of a slice through a lightcone.
plot_global_history(lightcone[, kind, ...]) Plot the global history of a given quantity from a light-

cone.

py21cmfast.plotting.coeval_sliceplot

py21cmfast.plotting.coeval_sliceplot(struct: py21cmfast.outputs._OutputStruct |
py21cmfast.outputs.Coeval, kind: Optional[str] = None, cbar_label:
Optional[str] = None, **kwargs)

Show a slice of a given coeval box.

Parameters
• struct (_OutputStruct or Coeval instance) – The output of a function such as ionize_box

(a class containing several quantities), or run_coeval.

• kind (str) – The quantity within the structure to be shown. A full list of available options
can be obtained by running Coeval.get_fields().

• cbar_label (str, optional) – A label for the colorbar. Some values of kind will have automat-
ically chosen labels, but these can be turned off by setting cbar_label=''.

Returns
fig, ax – figure and axis objects from matplotlib

Other Parameters
• All other parameters are passed directly to :func:`_imshow_slice`. These include

`slice_axis`
• and `slice_index`,
• which choose the actual slice to plot, optional `fig` and `ax` keywords which enable
• over-plotting previous figures,
• and the `imshow_kw` argument, which allows arbitrary styling of the plot.

py21cmfast.plotting.lightcone_sliceplot

py21cmfast.plotting.lightcone_sliceplot(lightcone: LightCone, kind: str = 'brightness_temp', lightcone2:
Optional[LightCone] = None, vertical: bool = False, xlabel:
Optional[str] = None, ylabel: Optional[str] = None, cbar_label:
Optional[str] = None, zticks: str = 'redshift', fig:
Optional[Figure] = None, ax: Optional[Axes] = None,
**kwargs)

Create a 2D plot of a slice through a lightcone.

6.4. API Reference 173

21cmFAST

Parameters
• lightcone (Lightcone) – The lightcone object to plot

• kind (str, optional) – The attribute of the lightcone to plot. Must be an array.

• lightcone2 (str, optional) – If provided, plot the _difference_ of the selected attribute between
the two lightcones.

• vertical (bool, optional) – Whether to plot the redshift in the vertical direction.

• cbar_label (str, optional) – A label for the colorbar. Some quantities have automatically
chosen labels, but these can be removed by setting cbar_label=”.

• zticks (str, optional) – Defines the co-ordinates of the ticks along the redshift axis. Can be
“redshift” (default), “frequency”, “distance” (which starts at zero for the lowest redshift) or
the name of any function in an astropy cosmology that is purely a function of redshift.

• kwargs – Passed through to imshow().

Returns
• fig – The matplotlib Figure object

• ax – The matplotlib Axis object onto which the plot was drawn.

py21cmfast.plotting.plot_global_history

py21cmfast.plotting.plot_global_history(lightcone: LightCone, kind: Optional[str] = None, ylabel:
Optional[str] = None, ylog: bool = False, ax: Optional[Axes] =
None)

Plot the global history of a given quantity from a lightcone.

Parameters
• lightcone (LightCone instance) – The lightcone containing the quantity to plot.

• kind (str, optional) – The quantity to plot. Must be in the global_quantities dict in the
lightcone. By default, will choose the first entry in the dict.

• ylabel (str, optional) – A y-label for the plot. If None, will use kind.

• ax (Axes, optional) – The matplotlib Axes object on which to plot. Otherwise, created.

py21cmfast.cache_tools

A set of tools for reading/writing/querying the in-built cache.

Functions

clear_cache(**kwargs) Delete datasets in the cache.
list_datasets(*[, direc, kind, hsh, seed, ...]) Yield all datasets which match a given set of filters.
query_cache(*[, direc, kind, hsh, seed, ...]) Get or print datasets in the cache.
readbox(*[, direc, fname, hsh, kind, seed, ...]) Read in a data set and return an appropriate object for it.

174 Chapter 6. Contents

21cmFAST

py21cmfast.cache_tools.clear_cache

py21cmfast.cache_tools.clear_cache(**kwargs)
Delete datasets in the cache.

Walks through the cache, with given filters, and deletes all un-initialised dataset objects, optionally printing their
representation to screen.

Parameters
kwargs – All options passed through to query_cache().

py21cmfast.cache_tools.list_datasets

py21cmfast.cache_tools.list_datasets(*, direc=None, kind=None, hsh=None, seed=None, redshift=None)
Yield all datasets which match a given set of filters.

Can be used to determine parameters of all cached datasets, in conjunction with readbox().

Parameters
• direc (str, optional) – The directory in which to search for the boxes. By default, this is the

centrally-managed directory, given by the config.yml in .21cmfast.

• kind (str, optional) – Filter by this kind (one of {“InitialConditions”, “PerturbedField”, “Ion-
izedBox”, “TsBox”, “BrightnessTemp”}

• hsh (str, optional) – Filter by this hsh.

• seed (str, optional) – Filter by this seed.

Yields
• fname (str) – The filename of the dataset (without directory).

• parts (tuple of strings) – The (kind, hsh, seed) of the data set.

py21cmfast.cache_tools.query_cache

py21cmfast.cache_tools.query_cache(*, direc=None, kind=None, hsh=None, seed=None, redshift=None,
show=True)

Get or print datasets in the cache.

Walks through the cache, with given filters, and return all un-initialised dataset objects, optionally printing their
representation to screen. Useful for querying which kinds of datasets are available within the cache, and choosing
one to read and use.

Parameters
• direc (str, optional) – The directory in which to search for the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast.

• kind (str, optional) – Filter by this kind. Must be one of “InitialConditions”, “Perturbed-
Field”, “IonizedBox”, “TsBox” or “BrightnessTemp”.

• hsh (str, optional) – Filter by this hsh.

• seed (str, optional) – Filter by this seed.

• show (bool, optional) – Whether to print out a repr of each object that exists.

6.4. API Reference 175

21cmFAST

Yields
obj – Output objects, un-initialized.

py21cmfast.cache_tools.readbox

py21cmfast.cache_tools.readbox(*, direc=None, fname=None, hsh=None, kind=None, seed=None,
redshift=None, load_data=True)

Read in a data set and return an appropriate object for it.

Parameters
• direc (str, optional) – The directory in which to search for the boxes. By default, this is the

centrally-managed directory, given by the config.yml in ~/.21cmfast/.

• fname (str, optional) – The filename (without directory) of the data set. If given, this will
be preferentially used, and must exist.

• hsh (str, optional) – The md5 hsh of the object desired to be read. Required if fname not
given.

• kind (str, optional) – The kind of dataset, eg. “InitialConditions”. Will be the name of a
class defined in wrapper. Required if fname not given.

• seed (str or int, optional) – The random seed of the data set to be read. If not given, and
filename not given, then a box will be read if it matches the kind and hsh, with an arbitrary
seed.

• load_data (bool, optional) – Whether to read in the data in the data set. Otherwise, only its
defining parameters are read.

Returns
dataset – An output object, whose type depends on the kind of data set being read.

Raises
• IOError : – If no files exist of the given kind and hsh.

• ValueError : – If either fname is not supplied, or both kind and hsh are not supplied.

6.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

6.5.1 Bug reports/Feature Requests/Feedback/Questions

It is incredibly helpful to us when users report bugs, unexpected behaviour, or request features. You can do the follow-
ing:

• Report a bug

• Request a Feature

• Ask a Question

When doing any of these, please try to be as succinct, but detailed, as possible, and use a “Minimum Working Example”
whenever applicable.

176 Chapter 6. Contents

https://github.com/21cmFAST/21cmFAST/issues/new?template=bug_report.md
https://github.com/21cmFAST/21cmFAST/issues/new?template=feature_request.md
https://github.com/21cmFAST/21cmFAST/issues/new?template=question.md

21cmFAST

6.5.2 Documentation improvements

21cmFAST could always use more documentation, whether as part of the official 21cmFAST docs, in docstrings, or even
on the web in blog posts, articles, and such. If you do the latter, take the time to let us know about it!

6.5.3 High-Level Steps for Development

This is an abbreviated guide to getting started with development of 21cmFAST, focusing on the discrete high-level
steps to take. See our notes for developers for more details about how to get around the 21cmFAST codebase and other
technical details.

There are two avenues for you to develop 21cmFAST. If you plan on making significant changes, and working with
21cmFAST for a long period of time, please consider becoming a member of the 21cmFAST GitHub organisation (by
emailing any of the owners or admins). You may develop as a member or as a non-member.

The difference between members and non-members only applies to the first step of the development process.

Note that it is highly recommended to work in an isolated python environment with all requirements installed from
environment_dev.txt. This will also ensure that pre-commit hooks will run that enforce the black coding style. If
you do not install these requirements, you must manually run black before committing your changes, otherwise your
changes will likely fail continuous integration.

As a member:

1. Clone the repo:

git clone git@github.com:21cmFAST/21cmFAST.git

As a non-member:

1. First fork ``21cmFAST <https://github.com/21cmFAST/21cmFAST>``_ (look for the “Fork” button), then clone
the fork locally:

git clone git@github.com:your_name_here/21cmFAST.git

The following steps are the same for both members and non-members:

2. Install a fresh new isolated environment:

conda create -n 21cmfast python=3
conda activate 21cmfast

3. Install the development requirements for the project:

conda env update -f environment_dev.yml

4. Install 21cmFAST. See Installation for more details.:

pip install -e .

4. Install pre-commit hooks:

pre-commit install

5. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

6.5. Contributing 177

https://21cmfast.readthedocs.org/en/latest/notes_for_developers
https://github.com/21cmFAST/21cmFAST
./installation.html

21cmFAST

Now you can make your changes locally. Note: as a member, you _must_ do step 5. If you make changes on
master, you will _not_ be able to push them.

6. When you’re done making changes, run pytest to check that your changes didn’t break things. You can run a
single test or subset of tests as well (see pytest docs):

pytest

7. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

Note that if the commit step fails due to a pre-commit hook, most likely the act of running the hook itself has
already fixed the error. Try doing the add and commit again (up, up, enter). If it’s still complaining, manually
fix the errors and do the same again.

8. Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request. You can mark
the PR as a draft until you are happy for it to be merged.

6.5.4 Developer Documentation

If you are new to developing 21cmFAST, please read the Contributing section first, which outlines the general concepts
for contributing to development, and provides a step-by-step walkthrough for getting setup. This page lists some more
detailed notes which may be helpful through the development process.

Compiling for debugging

When developing, it is usually a good idea to compile the underlying C code in DEBUG mode. This may allow extra
print statements in the C, but also will allow running the C under valgrind or gdb. To do this:

$ DEBUG=True pip install -e .

See Installation for more installation options.

Developing the C Code

In this section we outline how one might go about modifying/extending the C code and ensuring that the extension
is compatible with the wrapper provided here. It is critical that you run all tests after modifying _anything_ (and see
the section below about running with valgrind). When changing C code, before testing, ensure that the new C code is
compiled into your environment by running:

$ rm -rf build
$ pip install .

Note that using a developer install (-e) is not recommended as it stores compiled objects in the working directory which
don’t get updated as you change code, and can cause problems later.

There are two main purposes you may want to write some C code:

178 Chapter 6. Contents

21cmFAST

1. An external plugin/extension which uses the output data from 21cmFAST.

2. Modifying the internal C code of 21cmFAST.

21cmFAST currently provides no support for external plugins/extensions. It is entirely possible to write your own C
code to do whatever you want with the output data, but we don’t provide any wrapping structure for you to do this, you
will need to write your own. Internally, 21cmFAST uses the cffi library to aid the wrapping of the C code into Python.
You don’t need to do the same, though we recommend it. If your desired “extension” is something that needs to operate
in-between steps of 21cmFAST, we also provide no support for this, but it is possible, so long as the next step in the chain
maintains its API. You would be required to re-write the low-level wrapping function _preceding_ your inserted step
as well. For instance, if you had written a self-contained piece of code that modified the initial conditions box, adding
some physical effect which is not already covered, then you would need to write a low-level wrapper _and_ re-write the
initial_conditions function to modify the box before returning it. We provide no easy “plugin” system for doing
this currently. If your external code is meant to be inserted _within_ a basic step of 21cmFAST, this is currently not
possible. You will instead have to modify the source code itself.

Modifying the C-code of 21cmFAST should be relatively simple. If your changes are entirely internal to a given
function, then nothing extra needs to be done. A little more work has to be done if the modifications add/remove input
parameters or the output structure. If any of the input structures are modified (i.e. an extra parameter added to it), then
the corresponding class in py21cmfast.wrapper must be modified, usually simply to add the new parameter to the
defaults dict with a default value. For instance, if a new variable some_param was added to the user_params
struct in the ComputeInitialConditions C function, then the UserParams class in the wrapper would be modified,
adding some_param=<default_value> to its _default_ dict. If the default value of the parameter is dependent on
another parameter, its default value in this dict can be set to None, and you can give it a dynamic definition as a Python
@property. For example, the DIM parameter of UserParams is defined as:

@property
def DIM(self):

if self._some_param is None:
return self._DIM or 4 * self.HII_DIM

Note the underscore in _DIM here: by default, if a dynamic property is defined for a given parameter, the _default_
value is saved with a prefixed underscore. Here we return either the explicitly set DIM, or 4 by the HII_DIM. In addition,
if the new parameter is not settable – if it is completely determined by other parameters – then don’t put it in _defaults_
at all, and just give it a dynamic definition.

If you modify an output struct, which usually house a number of array quantities (often float pointers, but not necessar-
ily), then you’ll again need to modify the corresponding class in the wrapper. In particular, you’ll need to add an entry for
that particular array in the _init_arrays method for the class. The entry consists of initialising that array (usually to
zeros, but not necessarily), and setting its proper dtype. All arrays should be single-pointers, even for multi-dimensional
data. The latter can be handled by initalising the array as a 1D numpy array, but then setting its shape attribute (after
creation) to the appropriate n-dimensional shape (see the _init_arrays method for the InitialConditions class
for examples of this).

Modifying the global_params struct should be relatively straightforward, and no changes in the Python are necessary.
However, you may want to consider adding the new parameter to relevant _filter_params lists for the output struct
wrapping classes in the wrapper. These lists control which global parameters affect which output structs, and merely
provide for more accurate caching mechanisms.

6.5. Contributing 179

21cmFAST

C Function Standards

The C-level functions are split into two groups – low-level “private” functions, and higher-level “public” or “API”
functions. All API-level functions are callable from python (but may also be called from other C functions). All
API-level functions are currently prototyped in 21cmFAST.h.

To enable consistency of error-checking in Python (and a reasonable standard for any kind of code), we enforce that
any API-level function must return an integer status. Any “return” objects must be modified in-place (i.e. passed as
pointers). This enables Python to control the memory access of these variables, and also to receive proper error statuses
(see below for how we do exception handling). We also adhere to the convention that “output” variables should be
passed to the function as its last argument(s). In the case that _only_ the last argument is meant to be “output”, there
exists a simple wrapper _call_c_simple in wrapper.py that will neatly handle the calling of the function in an
intuitive pythonic way.

Running with Valgrind

If any changes to the C code are made, it is ideal to run tests under valgrind, and check for memory leaks. To do
this, install valgrind (we have tested v3.14+), which is probably available via your package manager. We provide a
suppression file for valgrind in the devel/ directory of the main repository.

It is ideal if you install a development-version of python especially for running these tests. To do this, download the
version of python you want and then configure/install with:

$./configure --prefix=<your-home>/<directory> --without-pymalloc --with-pydebug --with-
→˓valgrind
$ make; make install

Construct a virtualenv on top of this installation, and create your environment, and install all requirements.

If you do not wish to run with a modified version of python, you may continue with your usual version, but may get
some extra cruft in the output. If running with Python version > 3.6, consider running with environment variable
PYTHONMALLOC=malloc (see https://stackoverflow.com/questions/20112989/how-to-use-valgrind-with-python).

The general pattern for using valgrind with python is:

$ valgrind --tool=memcheck --track-origins=yes --leak-check=full --suppressions=devel/
→˓valgrind-suppress-all-but-c.supp <python script>

One useful command is to run valgrind over the test suite (from the top-level repo directory):

$ valgrind --tool=memcheck --track-origins=yes --leak-check=full --suppressions=devel/
→˓valgrind-suppress-all-but-c.supp pytest

While we will attempt to keep the suppression file updated to the best of our knowledge so that only relevant leaks and
errors are reported, you will likely have to do a bit of digging to find the relevant parts.

Valgrind will likely run very slowly, and sometimes you will know already which exact tests are those which may have
problems, or are relevant to your particular changes. To run these:

$ PYTHONMALLOC=malloc valgrind --tool=memcheck --track-origins=yes --leak-check=full --
→˓suppressions=devel/valgrind-suppress-all-but-c.supp pytest -v tests/<test_file>::<test_
→˓func> > valgrind.out 2>&1

Note that we also routed the stderr output to a file, which is useful because it can be quite voluminous. There is a python
script, devel/filter_valgrind.py which can be run over the output (valgrind.out in the above command) to filter
it down to only have stuff from 21cmfast in it.

180 Chapter 6. Contents

https://stackoverflow.com/questions/20112989/how-to-use-valgrind-with-python

21cmFAST

Producing Integration Test Data

There are bunch of so-called “integration tests”, which rely on previously-produced data. To produce this data, run
python tests/produce_integration_test_data.py.

Furthermore, this data should only be produced with good reason – the idea is to keep it static while the code changes,
to have something steady to compare to. If a particular PR fixes a bug which affects a certain tests’ data, then that data
should be re-run, in the context of the PR, so it can be explained.

Logging in C

The C code has a header file logging.h. The C code should never contain bare print-statements – everything should
be formally logged, so that the different levels can be printed to screen correctly. The levels are defined in logging.h,
and include levels such as INFO, WARNING and DEBUG. Each level has a corresponding macro that starts with LOG_.
Thus to log run-time information to stdout, you would use LOG_INFO("message");. Note that the message does not
require a final newline character.

Exception handling in C

There are various places that things can go wrong in the C code, and they need to be handled gracefully so that Python
knows what to do with it (rather than just quitting!). We use the simple cexcept.h header file from http://www.
nicemice.net/cexcept/ to enable a simple form of exception handling. That file itself should not be edited. There is
another header – exceptions.h – that defines how we use exceptions throughout 21cmFAST. Any time an error arises
that can be understood, the developer should add a Throw <ErrorKind>; line. The ErrorKind can be any of the
kinds defined in exceptions.h (eg. GSLError or ValueError). These are just integers.

Any C function that has a header in 21cmFAST.h – i.e. any function that is callable directly from Python – must be
globally wrapped in a Try {} Catch(error_code) {} block. See GenerateICs.c for an example. Most of the
code should be in the Try block. Anything that does a Throw at any level of the call stack within that Try will trigger
a jump to the Catch. The error_code is the integer that was thrown. Typically, one will perhaps want to do some
cleanup here, and then finally return the error code.

Python knows about the exit codes it can expect to receive, and will raise Python exceptions accordingly. From the
python side, two main kinds of exceptions could be raised, depending on the error code returned from C. The lesser
exception is called a ParameterError, and is supposed to indicate an error that happened merely because the param-
eters that were input to the calculation were just too extreme to handle. In the case of something like an automatic
Monte Carlo algorithm that’s iterating over random parameters, one would usually want to just keep going at this point,
because perhaps it just wandered too far in parameter space. The other kind of error is a FatalCError, and this is
where things went truly wrong, and probably will do for any combination of parameters.

If you add a kind of Exception in the C code (to exceptions.h), then be sure to add a handler for it in the
_process_exitcode function in wrapper.py.

Maintaining Array State

Part of the challenge of maintaining a nice wrapper around the fast C-code is keeping track of initialized memory,
and ensuring that the C structures that require that memory are pointing to the right place. Most of the arrays that
are computed in 21cmFAST are initialized in Python (using Numpy), then a pointer to their memory is given to the C
wrapper object.

To make matters more complicated, since some of the arrays are really big, it is sometimes necessary to write them
to disk to relieve memory pressure, and load them back in as required. That means that any time, a given array in a
C-based class may have one of several different “states”:

6.5. Contributing 181

http://www.nicemice.net/cexcept/
http://www.nicemice.net/cexcept/

21cmFAST

1. Completely Uninitialized 1. Allocated an initialized in memory 1. Computed (i.e. filled with the values defining
that array after computation in C) 1. Stored on disk 1. Stored and in memory.

It’s important to keep track of these states, because when passing the struct to the compute() function of another
struct (as input), we go and check if the array exists in memory, and initialize it. Of course, we shouldn’t ini-
tialize it with zeros if in fact it has been computed already and is sitting on disk ready to be loaded. Thus, the
OutputStruct tries to keep track of these states for every array in the structure, using the _array_state dictio-
nary. Every write/read/compute/purge operation self-consistently modifies the status of the array.

However, one needs to be careful – you can modify the actual state without modifying the _array_state (eg. simply
by doing a del object.array). In the future, we may be able to protect this to some extent, but for now we rely on
the good intent of the user.

Purging/Loading C-arrays to/from Disk

As of v3.1.0, there are more options for granular I/O, allowing large arrays to be purged from memory when they are
unnecessary for further computation. As a developer, you should be aware of the _get_required_input_arrays
method on all OutputStruct subclasses. This is available to tell the given class what arrays need to be available
at compute time in any of the input structs. For example, if doing PERTURB_ON_HIGH_RES, the PerturbedField
requires the hi-res density fields in InitialConditions. This gives indications as to what boxes can be purged to
disk (all the low-res boxes in the ICs, for example). Currently, this is only used to check that all boxes are available at
compute time, and is not used to actually automatically purge anything. Note however that InitialConditions does
have two custom methods that will purge unnecessary arrays before computing perturb fields or ionization fields.

Note: If you add a new quantity to a struct, and it is required input for other structs, you need to add it to the relevant
_get_required_input_arrays methods.

Further note that as of v3.1.0, partial structs can be written and read from disk (so you can specify
keys=['hires_density'] in the .read() method to just read the hi-res density field into the object.

Branching and Releasing

The aim is to make 21cmFAST’s releases as useful, comprehendible, and automatic as possible. This section lays out
explicitly how this works (mostly for the benefit of the admin(s)).

Versioning

The first thing to mention is that we use strict semantic versioning (since v2.0). Thus the versions are MAJOR.MINOR.
PATCH, with MAJOR including API-breaking changes, MINOR including new features, and PATCH fixing bugs or docu-
mentation etc. If you depend on hmf, you can set your dependency as 21cmFAST >= X.Y < X+1 and not worry that
we’ll break your code with an update.

To mechanically handle versioning within the package, we use two methods that we make to work together automat-
ically. The “true” version of the package is set with setuptools-scm. This stores the version in the git tag. There are
many benefits to this – one is that the version is unique for every single change in the code, with commits on top of a
release changing the version. This means that versions accessed via py21cmfast.__version__ are unique and track
the exact code in the package (useful for reproducing results). To get the current version from command line, simply
do python setup.py --version in the top-level directory.

To actually bump the version, we use bump2version. The reason for this is that the CHANGELOG requires manual
intervention – we need to change the “dev-version” section at the top of the file to the current version. Since this has to
be manual, it requires a specific commit to make it happen, which thus requires a PR (since commits can’t be pushed

182 Chapter 6. Contents

https://semver.org
https://pypi.org/project/setuptools-scm/

21cmFAST

to master). To get all this to happen as smoothly as possible, we have a little bash script bump that should be used to
bump the version, which wraps bump2version. What it does is:

1. Runs bump2version and updates the major, minor or patch part (passed like ./bump minor) in the VER-
SION file.

2. Updates the changelog with the new version heading (with the date), and adds a new dev-version heading
above that.

3. Makes a commit with the changes.

Note: Using the bump script is currently necessary, but future versions of bump2version may be able to do this
automatically, see https://github.com/c4urself/bump2version/issues/133.

The VERSION file might seem a bit redundant, and it is NOT recognized as the “official” version (that is given by
the git tag). Notice we didn’t make a git tag in the above script. That’s because the tag should be made directly on
the merge commit into master. We do this using a Github Action (tag-release.yaml) which runs on every push to
master, reads the VERSION file, and makes a tag based on that version.

Branching

For branching, we use a very similar model to git-flow. That is, we have a master branch which acts as the current
truth against which to develop, and production essentially as a deployment branch. I.e., the master branch is where
all features are merged (and some non-urgent bugfixes). production is always production-ready, and corresponds to
a particular version on PyPI. Features should be branched from master, and merged back to production. Hotfixes
can be branched directly from production, and merged back there directly, as well as back into master. Breaking
changes must only be merged to master when it has been decided that the next version will be a major version. We do
not do any long-term support of releases (so can’t make hotfixes to v2.x when the latest version is 2.(x+1), or make
a new minor version in 2.x when the latest version is 3.x). We have set the default branch to dev so that by default,
branches are merged there. This is deemed best for other developers (not maintainers/admins) to get involved, so the
default thing is usually right.

Note: Why not a more simple workflow like Github flow? The simple answer is it just doesn’t really make sense for
a library with semantic versioning. You get into trouble straight away if you want to merge a feature but don’t want to
update the version number yet (you want to merge multiple features into a nice release). In practice, this happens quite
a lot.

Note: OK then, why not just use production to accrue features and fixes until such time we’re ready to release? The
problem here is that if you’ve merged a few features into master, but then realize a patch fix is required, there’s no easy
way to release that patch without releasing all the merged features, thus updating the minor version of the code (which
may not be desirable). You could then just keep all features in their own branches until you’re ready to release, but this
is super annoying, and doesn’t give you the chance to see how they interact.

6.5. Contributing 183

https://github.com/c4urself/bump2version/issues/133
https://nvie.com/posts/a-successful-git-branching-model/

21cmFAST

Releases

To make a patch release, follow these steps:

1. Branch off of production.

2. Write the fix.

3. Write a test that would have broken without the fix.

4. Update the changelog with your changes, under the **Bugfixes** heading.

5. Commit, push, and create a PR.

6. Locally, run ./bump patch.

7. Push.

8. Get a PR review and ensure CI passes.

9. Merge the PR

Note that in the background, Github Actions should take care of then tagging production with the new version,
deploying that to PyPI, creating a new PR from master back into master, and accepting that PR. If it fails for one of
these steps, they can all be done manually.

Note that you don’t have to merge fixes in this way. You can instead just branch off master, but then the fix won’t be
included until the next minor version. This is easier (the admins do the adminy work) and useful for non-urgent fixes.

Any other fix/feature should be branched from master. Every PR that does anything noteworthy should have an
accompanying edit to the changelog. However, you do not have to update the version in the changelog – that is left up
to the admin(s). To make a minor release, they should:

1. Locally, git checkout release

2. git merge master

3. No new features should be merged into master after that branching occurs.

4. Run ./bump minor

5. Make sure everything looks right.

6. git push

7. Ensure all tests pass and get a CI review.

8. Merge into production

The above also works for MAJOR versions, however getting them in to master is a little different, in that they should
wait for merging until we’re sure that the next version will be a major version.

6.6 Authors

• Brad Greig - github.com/BradGreig

• Andrei Mesinger - github.com/andreimesinger

• Steven Murray - github.com/steven-murray

184 Chapter 6. Contents

21cmFAST

6.6.1 Contributors

6.7 Changelog

6.7.1 dev-version

6.7.2 v3.3.1 [24 May 2023]

Fixed

• Compilation of C code for some compilers (#330)

6.7.3 v3.3.0 [17 May 2023]

Internals

• Refactored setting up of inputs to high-level functions so that there is less code repetition.

Fixed

• Running with R_BUBBLE_MAX too large auto-fixes it to be BOX_LEN (#112)

• Bug in calling clear_cache.

• Inconsistency in the way that the very highest redshift of an evolution is handled between low-level code (eg.
spin_temperature()) and high-level code (eg. run_coeval()).

Added

• New validate_all_inputs function that cross-references the four main input structs and ensures all the pa-
rameters make sense together. Mostly for internal use.

• Ability to save/read directly from an open HDF5 File (#170)

• An implementation of cloud-in-cell to more accurately redistribute the perturbed mass across all neighbouring
cells instead of the previous nearest cell approach

• Changed PhotonConsEndCalibz from z = 5 -> z = 3.5 to handle later reionisation scenarios in line with current
observations (#305)

• Add in an initialisation check for the photon conservation to address some issues arising for early EOR histories
(#311)

• Added NON_CUBIC_FACTOR to UserParams to allow for non-cubic coeval boxes (#289)

6.7. Changelog 185

21cmFAST

6.7.4 v3.2.1 [13 Sep 2022]

Changed

• Included log10_mturnovers(_mini) in lightcone class. Only useful when USE_MINI_HALOS

6.7.5 v3.2.0 [11 Jul 2022]

Changed

• Floats are now represented to a specific number of significant digits in the hash of an output object. This fixes
problems with very close redshifts not being read from cache (#80). Note that this means that very close as-
tro/cosmo params will now be read from cache. This could cause issues when creating large databases with many
random parameters. The behaviour can modified in the configuration by setting the cache_param_sigfigs and
cache_redshift_sigfigs parameters (these are 6 and 4 by default, respectively). NOTE: updating to this ver-
sion will cause your previous cached files to become unusable. Remove them before updating.

Fixed

• Added a missing C-based error to the known errors in Python.

6.7.6 v3.1.5 [27 Apr 2022]

6.7.7 v3.1.4 [10 Feb 2022]

Fixed

• error in FFT normalization in FindHaloes

• docs not compiling on RTD due to missing scipy.integrate mock module

• Updated matplotlib removed support for setting vmin/vmax and norm. Now passes vmin/vmax to the norm()
constructor.

6.7.8 v3.1.3 [27 Oct 2021]

• Fixed FAST_FCOLL_TABLES so it only affects MCGs and not ACGs. Added tests of this flag for high and low z
separately.

6.7.9 v3.1.2 [14 Jul 2021]

Internals

• MINIMIZE_MEMORY flag significantly reduces memory without affecting performance much, by changing the way
some arrays are allocated and accessed in C. (#224)

186 Chapter 6. Contents

21cmFAST

Change

• Updated USE_INTERPOLATION_TABLES to be default True. This makes much more sense as a default value.
Until v4, a warning will be raised if it is not set explicitly.

6.7.10 v3.1.1 [13 Jun 2021]

Fixed

• Bug in deployment to PyPI.

6.7.11 v3.1.0 [13 Jun 2021]

Added

• Ability to access all evolutionary Coeval components, either from the end Coeval class, or the Lightcone.

• Ability to gather all evolutionary antecedents from a Coeval/Lightcone into the one file.

• FAST_FCOLL_TABLES in UserParams which improves speeds quite significantly for ~<10% accuracy decrease.

• Fast and low-memory generation of relative-velocity (vcb) initial conditions. Eliminated hi-res vcb boxes, as
they are never needed.

• Also output the mean free path (i.e. MFP_box in IonizedBox).

• Added the effect of DM-baryon relative velocities on PopIII-forming minihaloes. This now provides the correct
background evolution jointly with LW feedback. It gives rise to velocity-induced acoustic oscillations (VAOs)
from the relative-velocity fluctuations. We also follow a more flexible parametrization for LW feedback in mini-
haloes, following new simulation results, and add a new index ALPHA_STAR_MINI for minihaloes, now inde-
pendent of regular ACGs.

• New hooks keyword to high-level functions, that are run on the completion of each computational step, and can
be used to more generically write parts of the data to file.

• Ability to pass a function to write= to write more specific aspects of the data (internally, this will be put into
the hooks dictionary).

• run_lightcone and run_coeval use significantly less memory by offloading initial conditions and per-
turb_field instances to disk if possible.

Fixed

• Bug in 2LPT when USE_RELATIVE_VELOCITIES=True [Issue #191, PR #192]

• Error raised when redshifts are not in ascending order [Issue #176, PR #177]

• Errors when USE_FFTW_WISDOM is used on some systems [Issue #174, PR #199]

• Bug in ComputeIonizedBox causing negative recombination rate and ring structure in Gamma12_box [Issue #194,
PR #210]

• Error in determining the wisdom file name [Issue #209, PR#210]

• Bug in which cached C-based memory would be read in and free’d twice.

6.7. Changelog 187

21cmFAST

Internals

• Added dft.c, which makes doing all the cubic FFTs a lot easier and more consistent. [PR #199]

• More generic way of keeping track of arrays to be passed between C and Python, and their shape in Python, using
_get_box_structures. This also means that the various boxes can be queried before they are initialized and
computed.

• More stringent integration tests that test each array, not just the final brightness temperature.

• Ability to plot the integration test data to more easily identify where things have gone wrong (use --plots in
the pytest invocation).

• Nicer CLI interface for produce_integration_test_data.py. New options to clean the test_data/ di-
rectory, and also test data is saved by user-defined key rather than massive string of variables.

• Nicer debug statements before calls to C, for easily comparing between versions.

• Much nicer methods of keeping track of array state (in memory, on disk, c-controlled, etc.)

• Ability to free C-based pointers in a more granular way.

6.7.12 v3.0.3

Added

• coeval_callback and coeval_callback_redshifts flags to the run_lightcone. Gives the ability to run
arbitrary code on Coeval boxes.

• JOSS paper!

• get_fields classmethod on all output classes, so that one can easily figure out what fields are computed (and
available) for that class.

Fixed

• Only raise error on non-available external_table_path when actually going to use it.

6.7.13 v3.0.2

6.7.14 Fixed

• Added prototype functions to enable compilation for some standard compilers on MacOS.

6.7.15 v3.0.1

Modifications to the internal code structure of 21cmFAST

188 Chapter 6. Contents

21cmFAST

Added

• Refactor FFTW wisdom creation to be a python callable function

6.7.16 v3.0.0

Complete overhaul of 21cmFAST, including a robust python-wrapper and interface, caching mechanisms, and public
repository with continuous integration. Changes and equations for minihalo features in this version are found in https:
//arxiv.org/abs/2003.04442

All functionality of the original 21cmFAST v2 C-code has been implemented in this version, including
USE_HALO_FIELD and performing full integration instead of using the interpolation tables (which are faster).

Added

• Updated the radiation source model: (i) all radiation fields including X-rays, UV ionizing, Lyman Werner and
Lyman alpha are considered from two seperated population namely atomic-cooling (ACGs) and minihalo-hosted
molecular-cooling galaxies (MCGs); (ii) the turn-over masses of ACGs and MCGs are estimated with cooling
efficiency and feedback from reionization and lyman werner suppression (Qin et al. 2020). This can be switched
on using new flag_options USE_MINI_HALOS.

• Updated kinetic temperature of the IGM with fully ionized cells following equation 6 of McQuinn (2015) and par-
tially ionized cells having the volume-weightied temperature between the ionized (volume: 1-xHI; temperature
T_RE) and neutral components (volume: xHI; temperature: temperature of HI). This is stored in IonizedBox as
temp_kinetic_all_gas. Note that Tk in TsBox remains to be the kinetic temperature of HI.

• Tests: many unit tests, and also some regression tests.

• CLI: run 21cmFAST boxes from the command line, query the cache database, and produce plots for standard
comparison runs.

• Documentation: Jupyter notebook demos and tutorials, FAQs, installation instructions.

• Plotting routines: a number of general plotting routines designed to plot coeval and lightcone slices.

• New power spectrum option (POWER_SPECTRUM=5) that uses a CLASS-based transfer function. WARNING: If
POWER_SPECTRUM==5 the cosmo parameters cannot be altered, they are set to the Planck2018 best-fit values
for now (until CLASS is added): (omegab=0.02237, omegac= 0.120, hubble=0.6736 (the rest are irrelevant for
the transfer functions, but in case: A_s=2.100e-9, n_s=0.9649, z_reio = 11.357)

• New user_params option USE_RELATIVE_VELOCITIES, which produces initial relative velocity cubes (option
implemented, but not the actual computation yet).

• Configuration management.

• global params now has a context manager for changing parameters temporarily.

• Vastly improved error handling: exceptions can be caught in C code and propagated to Python to inform the user
of what’s going wrong.

• Ability to write high-level data (Coeval and Lightcone objects) directly to file in a simple portable format.

6.7. Changelog 189

https://arxiv.org/abs/2003.04442
https://arxiv.org/abs/2003.04442

21cmFAST

Changed

• POWER_SPECTRUM option moved from global_params to user_params.

• Default cosmology updated to Planck18.

6.7.17 v2.0.0

All changes and equations for this version are found in https://arxiv.org/abs/1809.08995.

Changed

• Updated the ionizing source model: (i) the star formation rates and ionizing escape fraction are scaled with the
masses of dark matter halos and (ii) the abundance of active star forming galaxies is exponentially suppressed
below the turn-over halo mass, M_{turn}, according to a duty cycle of exp(M_{turn}/M_{h}), where M_{h} is
a halo mass.

• Removed the mean free path parameter, R_{mfp}. Instead, directly computes inhomogeneous, sub-grid recom-
binations in the intergalactic medium following the approach of Sobacchi & Mesinger (2014)

6.7.18 v1.2.0

Added

• Support for a halo mass dependent ionizing efficiency: zeta = zeta_0 (M/Mmin)^alpha, where zeta_0 corresponds
to HII_EFF_FACTOR, Mmin –> ION_M_MIN, alpha –> EFF_FACTOR_PL_INDEX in ANAL_PARAMS.H

6.7.19 v1.12.0

Added

• Code ‘redshift_interpolate_boxes.c’ to interpolate between comoving cubes, creating comoving light cone boxes.

• Enabled openMP threading for SMP machines. You can specify the number of threads (for best performace, do
not exceed the number of processors) in INIT_PARAMS.H. You do not need to have an SMP machine to run the
code. NOTE: YOU SHOULD RE-INSTALL FFTW to use openMP (see INSTALL file)

• Included a threaded driver file ‘drive_zscroll_reion_param.c’ set-up to perform astrophysical parameter studies
of reionization

• Included explicit support for WDM cosmologies; see COSMOLOGY.H. The prescription is similar to that dis-
cussed in Barkana+2001; Mesinger+2005, madifying the (i) transfer function (according to the Bode+2001 for-
mula; and (ii) including the effective pressure term of WDM using a Jeans mass analogy. (ii) is approximated
with a sharp cuttoff in the EPS barrier, using 60* M_J found in Barkana+2001 (the 60 is an adjustment factor
found by fitting to the WDM collapsed fraction).

• A Gaussian filtering step of the PT fields to perturb_field.c, in addition to the implicit boxcar smoothing. This
avoids having”empty” density cells, i.e. delta=-1, with some small loss in resolution. Although for most uses
delta=-1 is ok, some Lya forest statistics do not like it.

• Added treatment of the risidual electron fraction from X-ray heating when computing the ionization field. Re-
latedly, modified Ts.c to output all intermediate evolution boxes, Tk and x_e.

190 Chapter 6. Contents

https://arxiv.org/abs/1809.08995

21cmFAST

• Added a missing factor of Omega_b in Ts.c corresponding to eq. 18 in MFC11. Users who used a previous
version should note that their results just effecively correspond to a higher effective X-ray efficiency, scaled by
1/Omega_baryon.

• Normalization optimization to Ts.c, increasing performace on arge resolution boxes

Fixed

• GSL interpolation error in kappa_elec_pH for GSL versions > 1.15

• Typo in macro definition, which impacted the Lya background calculation in v1.11 (not applicable to earlier
releases)

• Outdated filename sytax when calling gen_size_distr in drive_xHIscroll

• Redshift scrolling so that drive_logZscroll_Ts.c and Ts.c are in sync.

Changed

• Output format to avoid FFT padding for all boxes

• Filename conventions to be more explicit.

• Small changes to organization and structure

6.7.20 v1.1.0

Added

• Wrapper functions mod_fwrite() and mod_fread() in Cosmo_c_progs/misc.c, which should fix problems with
the library fwrite() and fread() for large files (>4GB) on certain operating systems.

• Included print_power_spectrum_ICs.c program which reads in high resolution initial conditions and prints out
an ASCII file with the associated power spectrum.

• Parameter in Ts.c for the maximum allowed kinetic temperature, which increases stability of the code when the
redshift step size and the X-ray efficiencies are large.

Fixed

• Oversight adding support for a Gaussian filter for the lower resolution field.

6.7. Changelog 191

21cmFAST

192 Chapter 6. Contents

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

193

21cmFAST

194 Chapter 7. Indices and tables

PYTHON MODULE INDEX

p
py21cmfast.cache_tools, 174
py21cmfast.inputs, 77
py21cmfast.outputs, 103
py21cmfast.plotting, 173
py21cmfast.wrapper, 158

195

21cmFAST

196 Python Module Index

INDEX

Symbols
__init__() (py21cmfast.inputs.AstroParams method),

79
__init__() (py21cmfast.inputs.CosmoParams method),

83
__init__() (py21cmfast.inputs.FlagOptions method),

88
__init__() (py21cmfast.inputs.GlobalParams method),

96
__init__() (py21cmfast.inputs.UserParams method),

99
__init__() (py21cmfast.outputs.BrightnessTemp

method), 104
__init__() (py21cmfast.outputs.Coeval method), 111
__init__() (py21cmfast.outputs.HaloField method),

114
__init__() (py21cmfast.outputs.InitialConditions

method), 120
__init__() (py21cmfast.outputs.IonizedBox method),

127
__init__() (py21cmfast.outputs.LightCone method),

134
__init__() (py21cmfast.outputs.PerturbHaloField

method), 137
__init__() (py21cmfast.outputs.PerturbedField

method), 144
__init__() (py21cmfast.outputs.TsBox method), 151

A
astro_params (py21cmfast.outputs.Coeval property),

112
AstroParams (class in py21cmfast.inputs), 77

B
brightness_temperature() (in module

py21cmfast.wrapper), 159
BrightnessTemp (class in py21cmfast.outputs), 103

C
calibrate_photon_cons() (in module

py21cmfast.wrapper), 160

cell_size (py21cmfast.outputs.LightCone property),
135

clear_cache() (in module py21cmfast.cache_tools),
175

clone() (py21cmfast.inputs.AstroParams method), 79
clone() (py21cmfast.inputs.CosmoParams method), 84
clone() (py21cmfast.inputs.FlagOptions method), 88
clone() (py21cmfast.inputs.UserParams method), 99
Coeval (class in py21cmfast.outputs), 110
coeval_sliceplot() (in module py21cmfast.plotting),

173
compute() (py21cmfast.outputs.BrightnessTemp

method), 105
compute() (py21cmfast.outputs.HaloField method), 114
compute() (py21cmfast.outputs.InitialConditions

method), 121
compute() (py21cmfast.outputs.IonizedBox method),

128
compute() (py21cmfast.outputs.PerturbedField method),

145
compute() (py21cmfast.outputs.PerturbHaloField

method), 138
compute() (py21cmfast.outputs.TsBox method), 152
compute_luminosity_function() (in module

py21cmfast.wrapper), 160
compute_tau() (in module py21cmfast.wrapper), 161
configure_redshift() (in module

py21cmfast.wrapper), 162
construct_fftw_wisdoms() (in module

py21cmfast.wrapper), 162
convert() (py21cmfast.inputs.AstroParams method), 80
convert() (py21cmfast.inputs.CosmoParams method),

84
convert() (py21cmfast.inputs.FlagOptions method), 88
convert() (py21cmfast.inputs.UserParams method), 99
cosmo (py21cmfast.inputs.CosmoParams property), 85
cosmo_params (py21cmfast.outputs.Coeval property),

112
CosmoParams (class in py21cmfast.inputs), 83

D
defining_dict (py21cmfast.inputs.AstroParams prop-

197

21cmFAST

erty), 81
defining_dict (py21cmfast.inputs.CosmoParams prop-

erty), 85
defining_dict (py21cmfast.inputs.FlagOptions prop-

erty), 90
defining_dict (py21cmfast.inputs.UserParams prop-

erty), 101
determine_halo_list() (in module

py21cmfast.wrapper), 162
DIM (py21cmfast.inputs.UserParams property), 100

E
ensure_arrays_computed()

(py21cmfast.outputs.BrightnessTemp method),
105

ensure_arrays_computed()
(py21cmfast.outputs.HaloField method),
114

ensure_arrays_computed()
(py21cmfast.outputs.InitialConditions method),
121

ensure_arrays_computed()
(py21cmfast.outputs.IonizedBox method),
128

ensure_arrays_computed()
(py21cmfast.outputs.PerturbedField method),
145

ensure_arrays_computed()
(py21cmfast.outputs.PerturbHaloField
method), 138

ensure_arrays_computed()
(py21cmfast.outputs.TsBox method), 152

ensure_arrays_inited()
(py21cmfast.outputs.BrightnessTemp method),
105

ensure_arrays_inited()
(py21cmfast.outputs.HaloField method),
114

ensure_arrays_inited()
(py21cmfast.outputs.InitialConditions method),
121

ensure_arrays_inited()
(py21cmfast.outputs.IonizedBox method),
128

ensure_arrays_inited()
(py21cmfast.outputs.PerturbedField method),
145

ensure_arrays_inited()
(py21cmfast.outputs.PerturbHaloField
method), 138

ensure_arrays_inited() (py21cmfast.outputs.TsBox
method), 152

ensure_input_computed()
(py21cmfast.outputs.BrightnessTemp method),

105
ensure_input_computed()

(py21cmfast.outputs.HaloField method),
114

ensure_input_computed()
(py21cmfast.outputs.InitialConditions method),
121

ensure_input_computed()
(py21cmfast.outputs.IonizedBox method),
128

ensure_input_computed()
(py21cmfast.outputs.PerturbedField method),
145

ensure_input_computed()
(py21cmfast.outputs.PerturbHaloField
method), 138

ensure_input_computed() (py21cmfast.outputs.TsBox
method), 152

exists() (py21cmfast.outputs.BrightnessTemp method),
105

exists() (py21cmfast.outputs.HaloField method), 114
exists() (py21cmfast.outputs.InitialConditions

method), 121
exists() (py21cmfast.outputs.IonizedBox method), 128
exists() (py21cmfast.outputs.PerturbedField method),

145
exists() (py21cmfast.outputs.PerturbHaloField

method), 138
exists() (py21cmfast.outputs.TsBox method), 152
external_table_path

(py21cmfast.inputs.GlobalParams property),
97

F
FAST_FCOLL_TABLES (py21cmfast.inputs.UserParams

property), 101
fieldnames (py21cmfast.inputs.AstroParams property),

82
fieldnames (py21cmfast.inputs.CosmoParams prop-

erty), 86
fieldnames (py21cmfast.inputs.FlagOptions property),

90
fieldnames (py21cmfast.inputs.UserParams property),

102
fieldnames (py21cmfast.outputs.BrightnessTemp prop-

erty), 109
fieldnames (py21cmfast.outputs.HaloField property),

118
fieldnames (py21cmfast.outputs.InitialConditions prop-

erty), 125
fieldnames (py21cmfast.outputs.IonizedBox property),

132
fieldnames (py21cmfast.outputs.PerturbedField prop-

erty), 149

198 Index

21cmFAST

fieldnames (py21cmfast.outputs.PerturbHaloField
property), 142

fieldnames (py21cmfast.outputs.TsBox property), 156
fields (py21cmfast.inputs.AstroParams property), 82
fields (py21cmfast.inputs.CosmoParams property), 86
fields (py21cmfast.inputs.FlagOptions property), 91
fields (py21cmfast.inputs.UserParams property), 102
fields (py21cmfast.outputs.BrightnessTemp property),

109
fields (py21cmfast.outputs.HaloField property), 118
fields (py21cmfast.outputs.InitialConditions property),

125
fields (py21cmfast.outputs.IonizedBox property), 132
fields (py21cmfast.outputs.PerturbedField property),

149
fields (py21cmfast.outputs.PerturbHaloField property),

142
fields (py21cmfast.outputs.TsBox property), 156
filename (py21cmfast.outputs.BrightnessTemp prop-

erty), 109
filename (py21cmfast.outputs.HaloField property), 118
filename (py21cmfast.outputs.InitialConditions prop-

erty), 125
filename (py21cmfast.outputs.IonizedBox property),

132
filename (py21cmfast.outputs.PerturbedField property),

149
filename (py21cmfast.outputs.PerturbHaloField prop-

erty), 142
filename (py21cmfast.outputs.TsBox property), 156
filtered_repr() (py21cmfast.inputs.GlobalParams

method), 96
find_existing() (py21cmfast.outputs.BrightnessTemp

method), 105
find_existing() (py21cmfast.outputs.HaloField

method), 115
find_existing() (py21cmfast.outputs.InitialConditions

method), 121
find_existing() (py21cmfast.outputs.IonizedBox

method), 128
find_existing() (py21cmfast.outputs.PerturbedField

method), 145
find_existing() (py21cmfast.outputs.PerturbHaloField

method), 138
find_existing() (py21cmfast.outputs.TsBox method),

152
flag_options (py21cmfast.outputs.Coeval property),

112
FlagOptions (class in py21cmfast.inputs), 86
from_file() (py21cmfast.outputs.BrightnessTemp class

method), 106
from_file() (py21cmfast.outputs.HaloField class

method), 115
from_file() (py21cmfast.outputs.InitialConditions

class method), 122
from_file() (py21cmfast.outputs.IonizedBox class

method), 129
from_file() (py21cmfast.outputs.PerturbedField class

method), 146
from_file() (py21cmfast.outputs.PerturbHaloField

class method), 139
from_file() (py21cmfast.outputs.TsBox class method),

153

G
gather() (py21cmfast.outputs.Coeval method), 111
gather() (py21cmfast.outputs.LightCone method), 134
get_all_fieldnames() (in module

py21cmfast.wrapper), 163
get_cached_data() (py21cmfast.outputs.Coeval

method), 111
get_cached_data() (py21cmfast.outputs.LightCone

method), 134
get_fieldnames() (py21cmfast.inputs.AstroParams

class method), 80
get_fieldnames() (py21cmfast.inputs.CosmoParams

class method), 84
get_fieldnames() (py21cmfast.inputs.FlagOptions

class method), 88
get_fieldnames() (py21cmfast.inputs.UserParams

class method), 99
get_fieldnames() (py21cmfast.outputs.BrightnessTemp

class method), 106
get_fieldnames() (py21cmfast.outputs.HaloField

class method), 115
get_fieldnames() (py21cmfast.outputs.InitialConditions

class method), 122
get_fieldnames() (py21cmfast.outputs.IonizedBox

class method), 129
get_fieldnames() (py21cmfast.outputs.PerturbedField

class method), 146
get_fieldnames() (py21cmfast.outputs.PerturbHaloField

class method), 139
get_fieldnames() (py21cmfast.outputs.TsBox class

method), 153
get_fields() (py21cmfast.inputs.AstroParams class

method), 80
get_fields() (py21cmfast.inputs.CosmoParams class

method), 84
get_fields() (py21cmfast.inputs.FlagOptions class

method), 88
get_fields() (py21cmfast.inputs.UserParams class

method), 99
get_fields() (py21cmfast.outputs.BrightnessTemp

class method), 106
get_fields() (py21cmfast.outputs.Coeval class

method), 111

Index 199

21cmFAST

get_fields() (py21cmfast.outputs.HaloField class
method), 115

get_fields() (py21cmfast.outputs.InitialConditions
class method), 122

get_fields() (py21cmfast.outputs.IonizedBox class
method), 129

get_fields() (py21cmfast.outputs.PerturbedField
class method), 146

get_fields() (py21cmfast.outputs.PerturbHaloField
class method), 139

get_fields() (py21cmfast.outputs.TsBox class
method), 153

get_pointer_fields()
(py21cmfast.inputs.AstroParams class method),
80

get_pointer_fields()
(py21cmfast.inputs.CosmoParams class
method), 84

get_pointer_fields()
(py21cmfast.inputs.FlagOptions class method),
88

get_pointer_fields()
(py21cmfast.inputs.UserParams class method),
99

get_pointer_fields()
(py21cmfast.outputs.BrightnessTemp class
method), 106

get_pointer_fields()
(py21cmfast.outputs.HaloField class method),
115

get_pointer_fields()
(py21cmfast.outputs.InitialConditions class
method), 122

get_pointer_fields()
(py21cmfast.outputs.IonizedBox class method),
129

get_pointer_fields()
(py21cmfast.outputs.PerturbedField class
method), 146

get_pointer_fields()
(py21cmfast.outputs.PerturbHaloField class
method), 139

get_pointer_fields() (py21cmfast.outputs.TsBox
class method), 153

get_required_input_arrays()
(py21cmfast.outputs.BrightnessTemp method),
106

get_required_input_arrays()
(py21cmfast.outputs.HaloField method),
116

get_required_input_arrays()
(py21cmfast.outputs.InitialConditions method),
122

get_required_input_arrays()

(py21cmfast.outputs.IonizedBox method),
129

get_required_input_arrays()
(py21cmfast.outputs.PerturbedField method),
146

get_required_input_arrays()
(py21cmfast.outputs.PerturbHaloField
method), 139

get_required_input_arrays()
(py21cmfast.outputs.TsBox method), 153

get_unique_filename() (py21cmfast.outputs.Coeval
method), 111

get_unique_filename()
(py21cmfast.outputs.LightCone method),
134

global_Tb (py21cmfast.outputs.BrightnessTemp at-
tribute), 109

global_Tk (py21cmfast.outputs.TsBox attribute), 156
global_Ts (py21cmfast.outputs.TsBox attribute), 157
global_x_e (py21cmfast.outputs.TsBox attribute), 157
global_xH (py21cmfast.outputs.IonizedBox attribute),

132
global_xHI (py21cmfast.outputs.LightCone property),

135
GlobalParams (class in py21cmfast.inputs), 91

H
HaloField (class in py21cmfast.outputs), 113
HII_tot_num_pixels (py21cmfast.inputs.UserParams

property), 101
HMF (py21cmfast.inputs.UserParams property), 101
hmf_model (py21cmfast.inputs.UserParams property),

102

I
INHOMO_RECO (py21cmfast.inputs.FlagOptions property),

89
initial_conditions() (in module

py21cmfast.wrapper), 163
InitialConditions (class in py21cmfast.outputs), 119
ionize_box() (in module py21cmfast.wrapper), 164
IonizedBox (class in py21cmfast.outputs), 126
is_computed (py21cmfast.outputs.BrightnessTemp

property), 109
is_computed (py21cmfast.outputs.HaloField property),

118
is_computed (py21cmfast.outputs.InitialConditions

property), 125
is_computed (py21cmfast.outputs.IonizedBox property),

132
is_computed (py21cmfast.outputs.PerturbedField prop-

erty), 149
is_computed (py21cmfast.outputs.PerturbHaloField

property), 142

200 Index

21cmFAST

is_computed (py21cmfast.outputs.TsBox property), 157
items() (py21cmfast.inputs.GlobalParams method), 96

K
keys() (py21cmfast.inputs.GlobalParams method), 96

L
LightCone (class in py21cmfast.outputs), 133
lightcone_coords (py21cmfast.outputs.LightCone

property), 135
lightcone_dimensions

(py21cmfast.outputs.LightCone property),
136

lightcone_distances (py21cmfast.outputs.LightCone
property), 136

lightcone_redshifts (py21cmfast.outputs.LightCone
property), 136

lightcone_sliceplot() (in module
py21cmfast.plotting), 173

list_datasets() (in module py21cmfast.cache_tools),
175

load_all() (py21cmfast.outputs.BrightnessTemp
method), 106

load_all() (py21cmfast.outputs.HaloField method),
116

load_all() (py21cmfast.outputs.InitialConditions
method), 122

load_all() (py21cmfast.outputs.IonizedBox method),
129

load_all() (py21cmfast.outputs.PerturbedField
method), 146

load_all() (py21cmfast.outputs.PerturbHaloField
method), 139

load_all() (py21cmfast.outputs.TsBox method), 153

M
M_MIN_in_Mass (py21cmfast.inputs.FlagOptions prop-

erty), 90
module

py21cmfast.cache_tools, 174
py21cmfast.inputs, 77
py21cmfast.outputs, 103
py21cmfast.plotting, 173
py21cmfast.wrapper, 158

N
n_slices (py21cmfast.outputs.LightCone property), 136
NON_CUBIC_FACTOR (py21cmfast.inputs.UserParams

property), 101
NU_X_THRESH (py21cmfast.inputs.AstroParams prop-

erty), 81

O
OMl (py21cmfast.inputs.CosmoParams property), 85

P
path (py21cmfast.outputs.BrightnessTemp property), 110
path (py21cmfast.outputs.HaloField property), 119
path (py21cmfast.outputs.InitialConditions property),

126
path (py21cmfast.outputs.IonizedBox property), 133
path (py21cmfast.outputs.PerturbedField property), 150
path (py21cmfast.outputs.PerturbHaloField property),

143
path (py21cmfast.outputs.TsBox property), 157
perturb_field() (in module py21cmfast.wrapper), 166
perturb_halo_list() (in module

py21cmfast.wrapper), 167
PerturbedField (class in py21cmfast.outputs), 143
PerturbHaloField (class in py21cmfast.outputs), 136
PHOTON_CONS (py21cmfast.inputs.FlagOptions property),

90
plot_global_history() (in module

py21cmfast.plotting), 174
pointer_fields (py21cmfast.inputs.AstroParams prop-

erty), 82
pointer_fields (py21cmfast.inputs.CosmoParams

property), 86
pointer_fields (py21cmfast.inputs.FlagOptions prop-

erty), 91
pointer_fields (py21cmfast.inputs.UserParams prop-

erty), 102
pointer_fields (py21cmfast.outputs.BrightnessTemp

property), 110
pointer_fields (py21cmfast.outputs.HaloField prop-

erty), 119
pointer_fields (py21cmfast.outputs.InitialConditions

property), 126
pointer_fields (py21cmfast.outputs.IonizedBox prop-

erty), 133
pointer_fields (py21cmfast.outputs.PerturbedField

property), 150
pointer_fields (py21cmfast.outputs.PerturbHaloField

property), 143
pointer_fields (py21cmfast.outputs.TsBox property),

157
POWER_SPECTRUM (py21cmfast.inputs.UserParams prop-

erty), 101
power_spectrum_model

(py21cmfast.inputs.UserParams property),
102

prepare() (py21cmfast.outputs.BrightnessTemp
method), 107

prepare() (py21cmfast.outputs.HaloField method), 116
prepare() (py21cmfast.outputs.InitialConditions

method), 123
prepare() (py21cmfast.outputs.IonizedBox method),

130

Index 201

21cmFAST

prepare() (py21cmfast.outputs.PerturbedField method),
147

prepare() (py21cmfast.outputs.PerturbHaloField
method), 140

prepare() (py21cmfast.outputs.TsBox method), 154
prepare_for_perturb()

(py21cmfast.outputs.InitialConditions method),
123

prepare_for_spin_temp()
(py21cmfast.outputs.InitialConditions method),
123

primitive_fields (py21cmfast.inputs.AstroParams
property), 82

primitive_fields (py21cmfast.inputs.CosmoParams
property), 86

primitive_fields (py21cmfast.inputs.FlagOptions
property), 91

primitive_fields (py21cmfast.inputs.UserParams
property), 102

primitive_fields (py21cmfast.outputs.BrightnessTemp
property), 110

primitive_fields (py21cmfast.outputs.HaloField
property), 119

primitive_fields (py21cmfast.outputs.InitialConditions
property), 126

primitive_fields (py21cmfast.outputs.IonizedBox
property), 133

primitive_fields (py21cmfast.outputs.PerturbedField
property), 150

primitive_fields (py21cmfast.outputs.PerturbHaloField
property), 143

primitive_fields (py21cmfast.outputs.TsBox prop-
erty), 157

purge() (py21cmfast.outputs.BrightnessTemp method),
107

purge() (py21cmfast.outputs.HaloField method), 116
purge() (py21cmfast.outputs.InitialConditions method),

123
purge() (py21cmfast.outputs.IonizedBox method), 130
purge() (py21cmfast.outputs.PerturbedField method),

147
purge() (py21cmfast.outputs.PerturbHaloField method),

140
purge() (py21cmfast.outputs.TsBox method), 154
py21cmfast.cache_tools

module, 174
py21cmfast.inputs

module, 77
py21cmfast.outputs

module, 103
py21cmfast.plotting

module, 173
py21cmfast.wrapper

module, 158

pystruct (py21cmfast.inputs.AstroParams property), 82
pystruct (py21cmfast.inputs.CosmoParams property),

86
pystruct (py21cmfast.inputs.FlagOptions property), 91
pystruct (py21cmfast.inputs.UserParams property),

102

Q
query_cache() (in module py21cmfast.cache_tools),

175

R
R_BUBBLE_MAX (py21cmfast.inputs.AstroParams prop-

erty), 81
random_seed (py21cmfast.outputs.BrightnessTemp

property), 110
random_seed (py21cmfast.outputs.Coeval property), 113
random_seed (py21cmfast.outputs.HaloField property),

119
random_seed (py21cmfast.outputs.InitialConditions

property), 126
random_seed (py21cmfast.outputs.IonizedBox property),

133
random_seed (py21cmfast.outputs.PerturbedField prop-

erty), 150
random_seed (py21cmfast.outputs.PerturbHaloField

property), 143
random_seed (py21cmfast.outputs.TsBox property), 157
read() (py21cmfast.outputs.BrightnessTemp method),

107
read() (py21cmfast.outputs.Coeval class method), 111
read() (py21cmfast.outputs.HaloField method), 116
read() (py21cmfast.outputs.InitialConditions method),

123
read() (py21cmfast.outputs.IonizedBox method), 130
read() (py21cmfast.outputs.LightCone class method),

134
read() (py21cmfast.outputs.PerturbedField method),

147
read() (py21cmfast.outputs.PerturbHaloField method),

140
read() (py21cmfast.outputs.TsBox method), 154
readbox() (in module py21cmfast.cache_tools), 176
refresh_cstruct() (py21cmfast.inputs.AstroParams

method), 80
refresh_cstruct() (py21cmfast.inputs.CosmoParams

method), 84
refresh_cstruct() (py21cmfast.inputs.FlagOptions

method), 88
refresh_cstruct() (py21cmfast.inputs.UserParams

method), 99
refresh_cstruct() (py21cmfast.outputs.BrightnessTemp

method), 107

202 Index

21cmFAST

refresh_cstruct() (py21cmfast.outputs.HaloField
method), 117

refresh_cstruct() (py21cmfast.outputs.InitialConditions
method), 124

refresh_cstruct() (py21cmfast.outputs.IonizedBox
method), 130

refresh_cstruct() (py21cmfast.outputs.PerturbedField
method), 147

refresh_cstruct() (py21cmfast.outputs.PerturbHaloField
method), 140

refresh_cstruct() (py21cmfast.outputs.TsBox
method), 154

run_coeval() (in module py21cmfast.wrapper), 168
run_lightcone() (in module py21cmfast.wrapper), 169

S
save() (py21cmfast.outputs.BrightnessTemp method),

108
save() (py21cmfast.outputs.Coeval method), 112
save() (py21cmfast.outputs.HaloField method), 117
save() (py21cmfast.outputs.InitialConditions method),

124
save() (py21cmfast.outputs.IonizedBox method), 131
save() (py21cmfast.outputs.LightCone method), 135
save() (py21cmfast.outputs.PerturbedField method),

148
save() (py21cmfast.outputs.PerturbHaloField method),

141
save() (py21cmfast.outputs.TsBox method), 155
self (py21cmfast.inputs.AstroParams property), 82
self (py21cmfast.inputs.CosmoParams property), 86
self (py21cmfast.inputs.FlagOptions property), 91
self (py21cmfast.inputs.UserParams property), 102
shape (py21cmfast.outputs.LightCone property), 136
spin_temperature() (in module py21cmfast.wrapper),

171
summarize() (py21cmfast.outputs.BrightnessTemp

method), 108
summarize() (py21cmfast.outputs.HaloField method),

117
summarize() (py21cmfast.outputs.InitialConditions

method), 124
summarize() (py21cmfast.outputs.IonizedBox method),

131
summarize() (py21cmfast.outputs.PerturbedField

method), 148
summarize() (py21cmfast.outputs.PerturbHaloField

method), 141
summarize() (py21cmfast.outputs.TsBox method), 155

T
t_STAR (py21cmfast.inputs.AstroParams property), 82
tot_fft_num_pixels (py21cmfast.inputs.UserParams

property), 103

TsBox (class in py21cmfast.outputs), 150

U
update() (py21cmfast.inputs.AstroParams method), 80
update() (py21cmfast.inputs.CosmoParams method), 84
update() (py21cmfast.inputs.FlagOptions method), 88
update() (py21cmfast.inputs.UserParams method), 99
use() (py21cmfast.inputs.GlobalParams method), 96
USE_HALO_FIELD (py21cmfast.inputs.FlagOptions prop-

erty), 90
USE_INTERPOLATION_TABLES

(py21cmfast.inputs.UserParams property),
101

USE_MASS_DEPENDENT_ZETA
(py21cmfast.inputs.FlagOptions property),
90

USE_TS_FLUCT (py21cmfast.inputs.FlagOptions prop-
erty), 90

user_params (py21cmfast.outputs.Coeval property), 113
UserParams (class in py21cmfast.inputs), 97

V
validate_all_inputs() (in module

py21cmfast.inputs), 77

W
wisdoms_path (py21cmfast.inputs.GlobalParams prop-

erty), 97
write() (py21cmfast.outputs.BrightnessTemp method),

108
write() (py21cmfast.outputs.HaloField method), 117
write() (py21cmfast.outputs.InitialConditions method),

124
write() (py21cmfast.outputs.IonizedBox method), 131
write() (py21cmfast.outputs.PerturbedField method),

148
write() (py21cmfast.outputs.PerturbHaloField method),

141
write() (py21cmfast.outputs.TsBox method), 155
write_data_to_hdf5_group()

(py21cmfast.outputs.BrightnessTemp method),
108

write_data_to_hdf5_group()
(py21cmfast.outputs.HaloField method),
118

write_data_to_hdf5_group()
(py21cmfast.outputs.InitialConditions method),
125

write_data_to_hdf5_group()
(py21cmfast.outputs.IonizedBox method),
131

write_data_to_hdf5_group()
(py21cmfast.outputs.PerturbedField method),
148

Index 203

21cmFAST

write_data_to_hdf5_group()
(py21cmfast.outputs.PerturbHaloField
method), 141

write_data_to_hdf5_group()
(py21cmfast.outputs.TsBox method), 155

X
X_RAY_Tvir_MIN (py21cmfast.inputs.AstroParams prop-

erty), 81

204 Index

	New Features in 3.0.0+
	Installation
	Basic Usage
	Interactive
	CLI

	Documentation
	Acknowledging
	Contents
	Installation
	Dependencies
	HPC
	Linux
	Ubuntu

	MacOSX

	For Users
	For Developers
	Compile Options
	Logging in C-Code

	Design Philosophy and Features for v3+
	Design Philosophy
	How it Works
	CLI

	Tutorials and FAQs
	Running and Plotting Coeval Cubes
	Basic Usage
	Advanced Step-by-Step Usage
	Initial Conditions
	Perturbed Field
	Ionization Field
	Brightness Temperature
	The Problem

	Using the Automatic Cache

	Running and Plotting LightCones
	Fiducial and lightcones
	global properties
	21-cm power spectra

	Accessing evolutionary Coeval data
	Create an example box
	Accessing cached data from Coeval
	Accessing Cached Data from a Lightcone
	Gathering cached data into one file

	Fiducial and lightcones
	global properties – optical depth
	21-cm power spectra

	Installation FAQ
	Errors with “recompile with -fPIC” for FFTW

	Miscellaneous FAQs
	My run seg-faulted, what should I do?
	Configuring 21cmFAST
	Global Parameters
	How can I read a Coeval object from disk?
	How can I read a LightCone object from file?

	API Reference
	py21cmfast
	py21cmfast.inputs
	py21cmfast.inputs.validate_all_inputs
	py21cmfast.inputs.AstroParams
	py21cmfast.inputs.AstroParams.__init__
	py21cmfast.inputs.AstroParams.clone
	py21cmfast.inputs.AstroParams.convert
	py21cmfast.inputs.AstroParams.get_fieldnames
	py21cmfast.inputs.AstroParams.get_fields
	py21cmfast.inputs.AstroParams.get_pointer_fields
	py21cmfast.inputs.AstroParams.refresh_cstruct
	py21cmfast.inputs.AstroParams.update
	py21cmfast.inputs.AstroParams.NU_X_THRESH
	py21cmfast.inputs.AstroParams.R_BUBBLE_MAX
	py21cmfast.inputs.AstroParams.X_RAY_Tvir_MIN
	py21cmfast.inputs.AstroParams.defining_dict
	py21cmfast.inputs.AstroParams.fieldnames
	py21cmfast.inputs.AstroParams.fields
	py21cmfast.inputs.AstroParams.pointer_fields
	py21cmfast.inputs.AstroParams.primitive_fields
	py21cmfast.inputs.AstroParams.pystruct
	py21cmfast.inputs.AstroParams.self
	py21cmfast.inputs.AstroParams.t_STAR

	py21cmfast.inputs.CosmoParams
	py21cmfast.inputs.CosmoParams.__init__
	py21cmfast.inputs.CosmoParams.clone
	py21cmfast.inputs.CosmoParams.convert
	py21cmfast.inputs.CosmoParams.get_fieldnames
	py21cmfast.inputs.CosmoParams.get_fields
	py21cmfast.inputs.CosmoParams.get_pointer_fields
	py21cmfast.inputs.CosmoParams.refresh_cstruct
	py21cmfast.inputs.CosmoParams.update
	py21cmfast.inputs.CosmoParams.OMl
	py21cmfast.inputs.CosmoParams.cosmo
	py21cmfast.inputs.CosmoParams.defining_dict
	py21cmfast.inputs.CosmoParams.fieldnames
	py21cmfast.inputs.CosmoParams.fields
	py21cmfast.inputs.CosmoParams.pointer_fields
	py21cmfast.inputs.CosmoParams.primitive_fields
	py21cmfast.inputs.CosmoParams.pystruct
	py21cmfast.inputs.CosmoParams.self

	py21cmfast.inputs.FlagOptions
	py21cmfast.inputs.FlagOptions.__init__
	py21cmfast.inputs.FlagOptions.clone
	py21cmfast.inputs.FlagOptions.convert
	py21cmfast.inputs.FlagOptions.get_fieldnames
	py21cmfast.inputs.FlagOptions.get_fields
	py21cmfast.inputs.FlagOptions.get_pointer_fields
	py21cmfast.inputs.FlagOptions.refresh_cstruct
	py21cmfast.inputs.FlagOptions.update
	py21cmfast.inputs.FlagOptions.INHOMO_RECO
	py21cmfast.inputs.FlagOptions.M_MIN_in_Mass
	py21cmfast.inputs.FlagOptions.PHOTON_CONS
	py21cmfast.inputs.FlagOptions.USE_HALO_FIELD
	py21cmfast.inputs.FlagOptions.USE_MASS_DEPENDENT_ZETA
	py21cmfast.inputs.FlagOptions.USE_TS_FLUCT
	py21cmfast.inputs.FlagOptions.defining_dict
	py21cmfast.inputs.FlagOptions.fieldnames
	py21cmfast.inputs.FlagOptions.fields
	py21cmfast.inputs.FlagOptions.pointer_fields
	py21cmfast.inputs.FlagOptions.primitive_fields
	py21cmfast.inputs.FlagOptions.pystruct
	py21cmfast.inputs.FlagOptions.self

	py21cmfast.inputs.GlobalParams
	py21cmfast.inputs.GlobalParams.__init__
	py21cmfast.inputs.GlobalParams.filtered_repr
	py21cmfast.inputs.GlobalParams.items
	py21cmfast.inputs.GlobalParams.keys
	py21cmfast.inputs.GlobalParams.use
	py21cmfast.inputs.GlobalParams.external_table_path
	py21cmfast.inputs.GlobalParams.wisdoms_path

	py21cmfast.inputs.UserParams
	py21cmfast.inputs.UserParams.__init__
	py21cmfast.inputs.UserParams.clone
	py21cmfast.inputs.UserParams.convert
	py21cmfast.inputs.UserParams.get_fieldnames
	py21cmfast.inputs.UserParams.get_fields
	py21cmfast.inputs.UserParams.get_pointer_fields
	py21cmfast.inputs.UserParams.refresh_cstruct
	py21cmfast.inputs.UserParams.update
	py21cmfast.inputs.UserParams.DIM
	py21cmfast.inputs.UserParams.FAST_FCOLL_TABLES
	py21cmfast.inputs.UserParams.HII_tot_num_pixels
	py21cmfast.inputs.UserParams.HMF
	py21cmfast.inputs.UserParams.NON_CUBIC_FACTOR
	py21cmfast.inputs.UserParams.POWER_SPECTRUM
	py21cmfast.inputs.UserParams.USE_INTERPOLATION_TABLES
	py21cmfast.inputs.UserParams.defining_dict
	py21cmfast.inputs.UserParams.fieldnames
	py21cmfast.inputs.UserParams.fields
	py21cmfast.inputs.UserParams.hmf_model
	py21cmfast.inputs.UserParams.pointer_fields
	py21cmfast.inputs.UserParams.power_spectrum_model
	py21cmfast.inputs.UserParams.primitive_fields
	py21cmfast.inputs.UserParams.pystruct
	py21cmfast.inputs.UserParams.self
	py21cmfast.inputs.UserParams.tot_fft_num_pixels

	py21cmfast.outputs
	py21cmfast.outputs.BrightnessTemp
	py21cmfast.outputs.BrightnessTemp.__init__
	py21cmfast.outputs.BrightnessTemp.compute
	py21cmfast.outputs.BrightnessTemp.ensure_arrays_computed
	py21cmfast.outputs.BrightnessTemp.ensure_arrays_inited
	py21cmfast.outputs.BrightnessTemp.ensure_input_computed
	py21cmfast.outputs.BrightnessTemp.exists
	py21cmfast.outputs.BrightnessTemp.find_existing
	py21cmfast.outputs.BrightnessTemp.from_file
	py21cmfast.outputs.BrightnessTemp.get_fieldnames
	py21cmfast.outputs.BrightnessTemp.get_fields
	py21cmfast.outputs.BrightnessTemp.get_pointer_fields
	py21cmfast.outputs.BrightnessTemp.get_required_input_arrays
	py21cmfast.outputs.BrightnessTemp.load_all
	py21cmfast.outputs.BrightnessTemp.prepare
	py21cmfast.outputs.BrightnessTemp.purge
	py21cmfast.outputs.BrightnessTemp.read
	py21cmfast.outputs.BrightnessTemp.refresh_cstruct
	py21cmfast.outputs.BrightnessTemp.save
	py21cmfast.outputs.BrightnessTemp.summarize
	py21cmfast.outputs.BrightnessTemp.write
	py21cmfast.outputs.BrightnessTemp.write_data_to_hdf5_group
	py21cmfast.outputs.BrightnessTemp.fieldnames
	py21cmfast.outputs.BrightnessTemp.fields
	py21cmfast.outputs.BrightnessTemp.filename
	py21cmfast.outputs.BrightnessTemp.global_Tb
	py21cmfast.outputs.BrightnessTemp.is_computed
	py21cmfast.outputs.BrightnessTemp.path
	py21cmfast.outputs.BrightnessTemp.pointer_fields
	py21cmfast.outputs.BrightnessTemp.primitive_fields
	py21cmfast.outputs.BrightnessTemp.random_seed

	py21cmfast.outputs.Coeval
	py21cmfast.outputs.Coeval.__init__
	py21cmfast.outputs.Coeval.gather
	py21cmfast.outputs.Coeval.get_cached_data
	py21cmfast.outputs.Coeval.get_fields
	py21cmfast.outputs.Coeval.get_unique_filename
	py21cmfast.outputs.Coeval.read
	py21cmfast.outputs.Coeval.save
	py21cmfast.outputs.Coeval.astro_params
	py21cmfast.outputs.Coeval.cosmo_params
	py21cmfast.outputs.Coeval.flag_options
	py21cmfast.outputs.Coeval.random_seed
	py21cmfast.outputs.Coeval.user_params

	py21cmfast.outputs.HaloField
	py21cmfast.outputs.HaloField.__init__
	py21cmfast.outputs.HaloField.compute
	py21cmfast.outputs.HaloField.ensure_arrays_computed
	py21cmfast.outputs.HaloField.ensure_arrays_inited
	py21cmfast.outputs.HaloField.ensure_input_computed
	py21cmfast.outputs.HaloField.exists
	py21cmfast.outputs.HaloField.find_existing
	py21cmfast.outputs.HaloField.from_file
	py21cmfast.outputs.HaloField.get_fieldnames
	py21cmfast.outputs.HaloField.get_fields
	py21cmfast.outputs.HaloField.get_pointer_fields
	py21cmfast.outputs.HaloField.get_required_input_arrays
	py21cmfast.outputs.HaloField.load_all
	py21cmfast.outputs.HaloField.prepare
	py21cmfast.outputs.HaloField.purge
	py21cmfast.outputs.HaloField.read
	py21cmfast.outputs.HaloField.refresh_cstruct
	py21cmfast.outputs.HaloField.save
	py21cmfast.outputs.HaloField.summarize
	py21cmfast.outputs.HaloField.write
	py21cmfast.outputs.HaloField.write_data_to_hdf5_group
	py21cmfast.outputs.HaloField.fieldnames
	py21cmfast.outputs.HaloField.fields
	py21cmfast.outputs.HaloField.filename
	py21cmfast.outputs.HaloField.is_computed
	py21cmfast.outputs.HaloField.path
	py21cmfast.outputs.HaloField.pointer_fields
	py21cmfast.outputs.HaloField.primitive_fields
	py21cmfast.outputs.HaloField.random_seed

	py21cmfast.outputs.InitialConditions
	py21cmfast.outputs.InitialConditions.__init__
	py21cmfast.outputs.InitialConditions.compute
	py21cmfast.outputs.InitialConditions.ensure_arrays_computed
	py21cmfast.outputs.InitialConditions.ensure_arrays_inited
	py21cmfast.outputs.InitialConditions.ensure_input_computed
	py21cmfast.outputs.InitialConditions.exists
	py21cmfast.outputs.InitialConditions.find_existing
	py21cmfast.outputs.InitialConditions.from_file
	py21cmfast.outputs.InitialConditions.get_fieldnames
	py21cmfast.outputs.InitialConditions.get_fields
	py21cmfast.outputs.InitialConditions.get_pointer_fields
	py21cmfast.outputs.InitialConditions.get_required_input_arrays
	py21cmfast.outputs.InitialConditions.load_all
	py21cmfast.outputs.InitialConditions.prepare
	py21cmfast.outputs.InitialConditions.prepare_for_perturb
	py21cmfast.outputs.InitialConditions.prepare_for_spin_temp
	py21cmfast.outputs.InitialConditions.purge
	py21cmfast.outputs.InitialConditions.read
	py21cmfast.outputs.InitialConditions.refresh_cstruct
	py21cmfast.outputs.InitialConditions.save
	py21cmfast.outputs.InitialConditions.summarize
	py21cmfast.outputs.InitialConditions.write
	py21cmfast.outputs.InitialConditions.write_data_to_hdf5_group
	py21cmfast.outputs.InitialConditions.fieldnames
	py21cmfast.outputs.InitialConditions.fields
	py21cmfast.outputs.InitialConditions.filename
	py21cmfast.outputs.InitialConditions.is_computed
	py21cmfast.outputs.InitialConditions.path
	py21cmfast.outputs.InitialConditions.pointer_fields
	py21cmfast.outputs.InitialConditions.primitive_fields
	py21cmfast.outputs.InitialConditions.random_seed

	py21cmfast.outputs.IonizedBox
	py21cmfast.outputs.IonizedBox.__init__
	py21cmfast.outputs.IonizedBox.compute
	py21cmfast.outputs.IonizedBox.ensure_arrays_computed
	py21cmfast.outputs.IonizedBox.ensure_arrays_inited
	py21cmfast.outputs.IonizedBox.ensure_input_computed
	py21cmfast.outputs.IonizedBox.exists
	py21cmfast.outputs.IonizedBox.find_existing
	py21cmfast.outputs.IonizedBox.from_file
	py21cmfast.outputs.IonizedBox.get_fieldnames
	py21cmfast.outputs.IonizedBox.get_fields
	py21cmfast.outputs.IonizedBox.get_pointer_fields
	py21cmfast.outputs.IonizedBox.get_required_input_arrays
	py21cmfast.outputs.IonizedBox.load_all
	py21cmfast.outputs.IonizedBox.prepare
	py21cmfast.outputs.IonizedBox.purge
	py21cmfast.outputs.IonizedBox.read
	py21cmfast.outputs.IonizedBox.refresh_cstruct
	py21cmfast.outputs.IonizedBox.save
	py21cmfast.outputs.IonizedBox.summarize
	py21cmfast.outputs.IonizedBox.write
	py21cmfast.outputs.IonizedBox.write_data_to_hdf5_group
	py21cmfast.outputs.IonizedBox.fieldnames
	py21cmfast.outputs.IonizedBox.fields
	py21cmfast.outputs.IonizedBox.filename
	py21cmfast.outputs.IonizedBox.global_xH
	py21cmfast.outputs.IonizedBox.is_computed
	py21cmfast.outputs.IonizedBox.path
	py21cmfast.outputs.IonizedBox.pointer_fields
	py21cmfast.outputs.IonizedBox.primitive_fields
	py21cmfast.outputs.IonizedBox.random_seed

	py21cmfast.outputs.LightCone
	py21cmfast.outputs.LightCone.__init__
	py21cmfast.outputs.LightCone.gather
	py21cmfast.outputs.LightCone.get_cached_data
	py21cmfast.outputs.LightCone.get_unique_filename
	py21cmfast.outputs.LightCone.read
	py21cmfast.outputs.LightCone.save
	py21cmfast.outputs.LightCone.cell_size
	py21cmfast.outputs.LightCone.global_xHI
	py21cmfast.outputs.LightCone.lightcone_coords
	py21cmfast.outputs.LightCone.lightcone_dimensions
	py21cmfast.outputs.LightCone.lightcone_distances
	py21cmfast.outputs.LightCone.lightcone_redshifts
	py21cmfast.outputs.LightCone.n_slices
	py21cmfast.outputs.LightCone.shape

	py21cmfast.outputs.PerturbHaloField
	py21cmfast.outputs.PerturbHaloField.__init__
	py21cmfast.outputs.PerturbHaloField.compute
	py21cmfast.outputs.PerturbHaloField.ensure_arrays_computed
	py21cmfast.outputs.PerturbHaloField.ensure_arrays_inited
	py21cmfast.outputs.PerturbHaloField.ensure_input_computed
	py21cmfast.outputs.PerturbHaloField.exists
	py21cmfast.outputs.PerturbHaloField.find_existing
	py21cmfast.outputs.PerturbHaloField.from_file
	py21cmfast.outputs.PerturbHaloField.get_fieldnames
	py21cmfast.outputs.PerturbHaloField.get_fields
	py21cmfast.outputs.PerturbHaloField.get_pointer_fields
	py21cmfast.outputs.PerturbHaloField.get_required_input_arrays
	py21cmfast.outputs.PerturbHaloField.load_all
	py21cmfast.outputs.PerturbHaloField.prepare
	py21cmfast.outputs.PerturbHaloField.purge
	py21cmfast.outputs.PerturbHaloField.read
	py21cmfast.outputs.PerturbHaloField.refresh_cstruct
	py21cmfast.outputs.PerturbHaloField.save
	py21cmfast.outputs.PerturbHaloField.summarize
	py21cmfast.outputs.PerturbHaloField.write
	py21cmfast.outputs.PerturbHaloField.write_data_to_hdf5_group
	py21cmfast.outputs.PerturbHaloField.fieldnames
	py21cmfast.outputs.PerturbHaloField.fields
	py21cmfast.outputs.PerturbHaloField.filename
	py21cmfast.outputs.PerturbHaloField.is_computed
	py21cmfast.outputs.PerturbHaloField.path
	py21cmfast.outputs.PerturbHaloField.pointer_fields
	py21cmfast.outputs.PerturbHaloField.primitive_fields
	py21cmfast.outputs.PerturbHaloField.random_seed

	py21cmfast.outputs.PerturbedField
	py21cmfast.outputs.PerturbedField.__init__
	py21cmfast.outputs.PerturbedField.compute
	py21cmfast.outputs.PerturbedField.ensure_arrays_computed
	py21cmfast.outputs.PerturbedField.ensure_arrays_inited
	py21cmfast.outputs.PerturbedField.ensure_input_computed
	py21cmfast.outputs.PerturbedField.exists
	py21cmfast.outputs.PerturbedField.find_existing
	py21cmfast.outputs.PerturbedField.from_file
	py21cmfast.outputs.PerturbedField.get_fieldnames
	py21cmfast.outputs.PerturbedField.get_fields
	py21cmfast.outputs.PerturbedField.get_pointer_fields
	py21cmfast.outputs.PerturbedField.get_required_input_arrays
	py21cmfast.outputs.PerturbedField.load_all
	py21cmfast.outputs.PerturbedField.prepare
	py21cmfast.outputs.PerturbedField.purge
	py21cmfast.outputs.PerturbedField.read
	py21cmfast.outputs.PerturbedField.refresh_cstruct
	py21cmfast.outputs.PerturbedField.save
	py21cmfast.outputs.PerturbedField.summarize
	py21cmfast.outputs.PerturbedField.write
	py21cmfast.outputs.PerturbedField.write_data_to_hdf5_group
	py21cmfast.outputs.PerturbedField.fieldnames
	py21cmfast.outputs.PerturbedField.fields
	py21cmfast.outputs.PerturbedField.filename
	py21cmfast.outputs.PerturbedField.is_computed
	py21cmfast.outputs.PerturbedField.path
	py21cmfast.outputs.PerturbedField.pointer_fields
	py21cmfast.outputs.PerturbedField.primitive_fields
	py21cmfast.outputs.PerturbedField.random_seed

	py21cmfast.outputs.TsBox
	py21cmfast.outputs.TsBox.__init__
	py21cmfast.outputs.TsBox.compute
	py21cmfast.outputs.TsBox.ensure_arrays_computed
	py21cmfast.outputs.TsBox.ensure_arrays_inited
	py21cmfast.outputs.TsBox.ensure_input_computed
	py21cmfast.outputs.TsBox.exists
	py21cmfast.outputs.TsBox.find_existing
	py21cmfast.outputs.TsBox.from_file
	py21cmfast.outputs.TsBox.get_fieldnames
	py21cmfast.outputs.TsBox.get_fields
	py21cmfast.outputs.TsBox.get_pointer_fields
	py21cmfast.outputs.TsBox.get_required_input_arrays
	py21cmfast.outputs.TsBox.load_all
	py21cmfast.outputs.TsBox.prepare
	py21cmfast.outputs.TsBox.purge
	py21cmfast.outputs.TsBox.read
	py21cmfast.outputs.TsBox.refresh_cstruct
	py21cmfast.outputs.TsBox.save
	py21cmfast.outputs.TsBox.summarize
	py21cmfast.outputs.TsBox.write
	py21cmfast.outputs.TsBox.write_data_to_hdf5_group
	py21cmfast.outputs.TsBox.fieldnames
	py21cmfast.outputs.TsBox.fields
	py21cmfast.outputs.TsBox.filename
	py21cmfast.outputs.TsBox.global_Tk
	py21cmfast.outputs.TsBox.global_Ts
	py21cmfast.outputs.TsBox.global_x_e
	py21cmfast.outputs.TsBox.is_computed
	py21cmfast.outputs.TsBox.path
	py21cmfast.outputs.TsBox.pointer_fields
	py21cmfast.outputs.TsBox.primitive_fields
	py21cmfast.outputs.TsBox.random_seed

	py21cmfast.wrapper
	py21cmfast.wrapper.brightness_temperature
	py21cmfast.wrapper.calibrate_photon_cons
	py21cmfast.wrapper.compute_luminosity_function
	py21cmfast.wrapper.compute_tau
	py21cmfast.wrapper.configure_redshift
	py21cmfast.wrapper.construct_fftw_wisdoms
	py21cmfast.wrapper.determine_halo_list
	py21cmfast.wrapper.get_all_fieldnames
	py21cmfast.wrapper.initial_conditions
	py21cmfast.wrapper.ionize_box
	py21cmfast.wrapper.perturb_field
	py21cmfast.wrapper.perturb_halo_list
	py21cmfast.wrapper.run_coeval
	py21cmfast.wrapper.run_lightcone
	py21cmfast.wrapper.spin_temperature

	py21cmfast.plotting
	py21cmfast.plotting.coeval_sliceplot
	py21cmfast.plotting.lightcone_sliceplot
	py21cmfast.plotting.plot_global_history

	py21cmfast.cache_tools
	py21cmfast.cache_tools.clear_cache
	py21cmfast.cache_tools.list_datasets
	py21cmfast.cache_tools.query_cache
	py21cmfast.cache_tools.readbox

	Contributing
	Bug reports/Feature Requests/Feedback/Questions
	Documentation improvements
	High-Level Steps for Development
	Pull Request Guidelines

	Developer Documentation
	Compiling for debugging
	Developing the C Code
	C Function Standards
	Running with Valgrind
	Producing Integration Test Data
	Logging in C
	Exception handling in C
	Maintaining Array State
	Purging/Loading C-arrays to/from Disk

	Branching and Releasing
	Versioning
	Branching
	Releases

	Authors
	Contributors

	Changelog
	dev-version
	v3.3.1 [24 May 2023]
	Fixed

	v3.3.0 [17 May 2023]
	Internals
	Fixed
	Added

	v3.2.1 [13 Sep 2022]
	Changed

	v3.2.0 [11 Jul 2022]
	Changed
	Fixed

	v3.1.5 [27 Apr 2022]
	v3.1.4 [10 Feb 2022]
	Fixed

	v3.1.3 [27 Oct 2021]
	v3.1.2 [14 Jul 2021]
	Internals
	Change

	v3.1.1 [13 Jun 2021]
	Fixed

	v3.1.0 [13 Jun 2021]
	Added
	Fixed
	Internals

	v3.0.3
	Added
	Fixed

	v3.0.2
	Fixed
	v3.0.1
	Added

	v3.0.0
	Added
	Changed

	v2.0.0
	Changed

	v1.2.0
	Added

	v1.12.0
	Added
	Fixed
	Changed

	v1.1.0
	Added
	Fixed

	Indices and tables
	Python Module Index
	Index

